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Abstract

An analytical solution to the problem of one-dimensional high amplitude wave propagation in layered heteroge-
neous material systems has been developed, based on Floquet’s theory of ODEs with periodic coefficients. The problem
is formulated based on a conventional plate impact experimental configuration. In a plate impact test, the boundary
condition at the plane of the impact varies with time as a result of multiple wave interactions at the interfaces of the
layered target material. The approach of the solution is to convert the initial velocity boundary value problem to a time-
dependent stress boundary value problem and then obtain the stress time history by means of superposition. By taking
this approach, we explicitly consider multiple wave interactions at the heterogeneous interfaces. A characteristic steady-
state stress oyean for heterogenous material has been identified which is quite different from o, the stress at the initial
time of impact. It is shown that o,.., can be obtained by summing up the stress increments at the interfaces or by using
mixture theory. The late-time (steady-state) solution procedures for the plate impact problem are presented for impact
velocities corresponding to elastic as well as shock wave loading conditions. Results from the analytical model compare
well with both numerical results obtained from a shock wave based finite element code and experimental data.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In order to characterize the dynamic behavior of materials under impact loading, diagnostic experiments
are usually carried out using a plate impact test configuration under a one-dimensional strain state. The
plate impact test serves the exact purpose of characterizing materials under high-pressure dynamic loading,
analogous to that of uniaxial tensile tests under quasi-static loading conditions. In a plate impact test, the
stress response is usually measured at intermediate locations within a given specimen using embedded
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manganin or PVDF gauges, while the velocity measurements are typically carried out using a velocity
interferometry (VISAR) system at the stress free back surface of the target plate, or at the interface of a
transparent window glued to the back of the target plate. These well-structured wave profiles in metals and
ceramics provide a wealth of information about the shock response of the material. Since engineered
composites such as glass reinforced plastic (GRP) comprise complex microstructures, wave scattering oc-
curs due to multiple wave interactions at interfaces. The description of scattering process in a real com-
posite is very complicated and extremely difficult to analyze. It has been recognized that a periodically
layered system offers a practical configuration to investigate the effect of heterogeneity of general com-
posites. Wave propagation in a periodically layered medium has been studied extensively for decades.
Historically, theoretical work on wave propagation studies in layered systems has followed the mathe-
matical solution to ordinary differential equations with periodic coefficients attributed to Floquet that dates
back to 1800s. As early as 1956, Rytov obtained a dispersion relation for one-dimensional longitudinal
waves propagating in a periodic laminate. Later, by using the effective stiffness theory Sun et al. (1968)
obtained the dispersion relations for harmonic waves propagating parallel and normal to the direction of
the layering. Peck and Gurtman (1969) studied the wave propagation parallel to the layers, and obtained
the asymptotic solution through approximation under similar loading conditions. Sve (1972) and Chen and
Clifton (1975) predicted the late-time asymptotic solutions and the wave front solution for wave propa-
gation normal to the layers for unit step loading at the boundary. Ting (1980) developed an analytical
solution for unit step loading for viscoelastic layered media at finite locations.

The above-mentioned analytical works of wave propagation in layered material systems have either used
a sinusoidal wave loading, or unit step loading. There are no known analytical solutions for plate impact
loading conditions. The main objective of this paper is to present a solution methodology based on Flo-
quet’s theory for plate impact loading problems. The background section presents a brief description of the
plate impact test configuration as well as a summary of earlier work relating to wave propagation analysis
for layered material systems. In Section 3 we develop the basic formulation for plate impact problem and
propose solution procedures. In Section 3.3 we compare the analytical results with experimental data. In
the final section we summarize the paper.

2. Background

A schematic of the compressive stress history (measured using an embedded stress gauge) is shown in
Fig. 1. The portion of the plot indicated by the letter A represents the arrival of an elastic shock wave from
the impact plane. The material particles are compressed elastically (A—C) until the relatively slow moving
plastic shock wave arrives at the given location. Typically, the shape and time duration of the portion A-C
depends on the strain rate sensitivity of the material and the distance from the impact plane. If the shock
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Fig. 1. Schematic wave profiles of homogeneous metals and layered composites for a finite thickness flyer plate: (a) homogeneous
metals and (b) layered composites.
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amplitude is below the elastic limit, the profile typically follows portions AC—-CE. The rise time is usually of
the order of nanoseconds for metals and ceramics. If the shock amplitude is above the elastic limit, then the
plastic shock takes the stress to the peak between points D and E. The peak level remains the same until the
elastic unloading wave arrives from the back of the flyer plate. Often, the release portion of the wave profile
exhibits a typical structure that consists of elastic release (E-F), transition (F-G), and plastic release (G—H).
Fig. 1(b) shows schematic of a typical shock response of a layered composite system. Interpretation of this
profile is extremely difficult without a careful wave analysis. Since stress or velocity profiles is a result of
superpositions of numerous wave reflections at the interfaces, the stress level at R; is an intermediate stress
state. 4; R, shows a dispersed wave structure with longer rise time compared to the rise time in a target plate
of a homogeneous material. The oscillatory portion R;—E; at the peak level indicates arrivals of several
release and compressive waves. The pulse duration becomes a function of not only the thickness and wave
speed in the flyer plate, but also on the number of interfaces and wave speeds in the heterogeneous system.
In layered systems, planar interfaces interact with the incident shock wave generating transmitted and
reflected waves, their amplitudes being determined by the impedance mismatch. This factor should be
explicitly considered in evaluating the shock response of layered systems.

Table 1 summarizes major past work that studied wave profiles in alternating layered systems using the
plate impact test configuration. Lundergan and Drumheller (1971) numerically simulated the response of a
layered material system with varying thickness. The simulated particle velocity response exhibited a slow
rise time and an oscillatory behavior as observed in experiments. The idea of replacing the dispersive,
heterogeneous composite with an equivalent homogeneous dissipative continuum was first proposed by
Barker (1971). A general nonlinear Maxwell (viscous) model was proposed to simulate stress relaxation
from an instantaneous state of the mixture to the equilibrium level. In addition, Barker obtained oscillatory
stress solutions by explicitly modeling each layer using a stress wave propagation based one-dimensional
code. Barker validated the viscous model for the composite equation of state by successfully matching the
averaged stress response in the oscillations from the code. Barker et al. (1974) further validated his theory
using results from experiments in which a low volume fraction of aluminum was used in a PMMA/alu-
minum based layered system. However, in general this model fails to predict the structure of the stress
waves (rise time, peak stress and oscillations).

While carrying out impact experiments on layered Cu/PMMA systems, Oved et al. (1978) (see Table 1)
noticed significant oscillations in the stress wave profiles. As can be seen in the corresponding figure, the
oscillations occur approximately about a mean stress. When the amplitude of oscillations is substantial,
Oved pointed out that oscillations do not vanish with distance of propagation in the shock regime. Con-
sequently, oscillations should not be ignored but it should be explicitly modeled. More recently Kanel et al.
(1995) confirmed the harmonic oscillations in experiments on a Cu/PE system. They proposed a relaxation
model similar to that of Barker, though the physics behind the models is quite different. The main thrust of
Kanel’s approach was to obtain the nonequilibrium pressure (the difference between the Rayleigh line to the
final state and the equilibrium pressure corresponding to the Hugoniot curve) by assuming an empirical
kinetic relationship.

Dandekar and Beaulieu (1995) reported results from plate impact tests on a woven fabric composite. The
measured VISAR signal revealed an oscillatory peak stress behavior and a long rise time. Boteler et al.
(1999) further conducted a combined experimental and computational study on stress attenuation and
dispersion in GRP laminates. The stress profiles at three different distances from the impact plane were
measured using embedded PVDF gauges. They observed that the rise time increased and the average peak
stress reduced with propagation distance. Some oscillations were observed at the peak stress in the first
gauge, which was closer to the impact plane. Stress histories at locations significantly away from the impact
plane showed no oscillatory behavior at the peak level. Their computational modeling using a three
dimensional viscoelastic model matched the attenuation of the stress, but failed to reproduce wave dis-
persions.
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Review of major past work done in studying wave profiles in alternating layered systems under plate impact

Author/year Material system (target) Experiment/ Observations or results Method/model
simulation configuration
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Table 1 (continued)

Author/year Material system (target) Experiment/ Observations or results Method/model
simulation configuration
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Clements et al. (1996) proposed a modified unit cell method to model wave propagation in alternating
Epoxy and Epoxy-graphite system. Recently, Zhuang (Zhuang, 2002; Zhuang et al., 2003) conducted a
thorough experimental investigation by performing a large number of plate impact experiments in selected
material systems involving alternate units of either polycarbonate and stainless steel or polycarbonate and
glass. Both the quasi-harmonic oscillations and the finite rise time were observed in different systems. The
effects of impedance mismatch, interface density, propagation distance as well as loading strength were
examined as the basic parameters in his experiments.

In the study of wave propagation in solids, scattering, dispersion and attenuation play critical roles in
determining the thermomechanical response of the media. These phenomena can be attributed to a number
of nonlinearities arising from the wave characteristics, loading conditions and material heterogeneity (at
various spatial scales ranging from nanometers to a few millimeters). The nonlinear effects in general can be
ascribed to impedance (and geometric) mismatch at various length scales as often encountered in composite
material systems. In addition, material nonlinearities (inelastic effects) can arise due to void nucleation and
growth, microcracking, and delamination. The strong shock waves generated under high velocity impact
loading often induce nonlinear effects in the deformation and failure behaviors (Nesterenko, 2001).

Present authors (Chandra et al., 2002) showed that the observed structures in the measured stress wave
profiles in layered systems under low velocity impact loading condition could be explained through
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modeling the scattering effects at planar interfaces. However, for high velocity impact loading conditions, it
is fully realized that material nonlinear effects may play a key role in altering the basic structure. Therefore,
it is important that models that describe the wave structures include equation of state for each material in
the periodic layered system, in the shock wave regime.

3. Problem formulation and solution method

3.1. Formulation

Consider two semi-infinite bodies Q; (—oo < y,z < 00,06x < 00) and 2, (—o0 < y,z < 00, —00 <
x < 0) such that they are initially separated and then impact each other with velocity ¥ = voi in the x-
direction, as shown in Fig. 2(a). Without loss of generality, we can assume Q; to be fixed in space and Q,
impacting on the entire x = 0 plane. Upon impact, stress waves are generated on a plane parallel to the
impact plane and travel in the negative x-direction in , positive x-direction in 2, with wave velocities
determined by the material properties of these two bodies. The amplitude or strength of the stress wave is
determined by the velocity of impact vy and acoustic impedances of 2; and ©2,. As the waves propagate
away from the impact plane, bodies 2, and Q, are in compression with a uniaxial state of strain ¢, # 0 and
all other components ¢; = 0 (for i, j = 1,2, 3 except i = j = 1). The problem is to find the state of strain and
stress in the compressed regions, given the velocity of impact and the material properties of the two bodies.

d
— vy WAyl
C AtB) A[B / ////
Ps Prip3 /// 7 " Z
Ei E| E: // % P é
1
Id
(."’,
d \
Initial position Impact surface X !
(a) (b)
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\_(l] (1} ] \
Sll
Ld dad - | "3 |~
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Fig. 2. Schematic of the configuration for impact problem: (a) two half spaces of homogeneous materials; (b) general plate impact
problem of layered systems; (c) plate impact problem of two half spaces with target being layered and (d) the layered media under unit
step loading.
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This plate impact problem has long been well understood and successfully modeled when Q; and Q, are
homogeneous. What we seek here is a solution to the problem when Q; is laminated as shown in Fig. 2(c) as
a precursor to the practical plate impact test shown in Fig. 2(b). In the plate impact test (Fig. 2(b)), 2, is
called flyer plate or the impactor impacting on 2, termed target plate. The target plate is made of alter-
nating layers of materials A and B with the impactor made of a homogeneous material C. All the materials
(layers) are assumed to be homogeneous and damage free with known mechanical (E, v) and physical (p,
and equation of state) properties. Though the bulk of the paper assumes a constitutive relationship of linear
elastic, isotropic form, extensions to very high stress regimes are formulated by invoking the equation of
state.

In this work, we seek the stress history in Q;, as posed in Fig. 2(b). This problem is identical to the
problem in Fig. 2(c) if the thickness of the flyer plate (df) and the target plate (d;), and the lateral
dimensions (radius of the plates) are large enough not to permit wave reflections from the free surfaces to
interfere with the solution. In other words, the strain state remains strictly one dimensional for the solution
time duration.

The governing equations can be written as follows:

Equation of motion

do(x, ) Q?u(x, 1)
x Pi Y (1)

Velocity continuity

Oe(x, 1)  Ou(x,1)

ot o @
Constitutive relation (elastic laminates)
U(X, t) :Eig(x7 t)) (3)

where o(x, ), u(x,?), v(x,t) and &(x, ¢) denote the longitudinal stress, displacement, velocity and strain,
respectively. As shown in Fig. 2(b), the constants p;, and E; (i = 1,2, 3) represent the material densities
and the elastic moduli for the uniaxial strain of materials A, B and C, respectively.

Initial boundary condition
Stress, displacement and strain are zero in Q; and Q, at t =0~

a(x,0)=0
u(x,0) =0 for —oo <x < 0. (4)
e(x,0)=0

Initial velocity condition
v(x,0) =vy forx <0. (5)

Stress and velocity continuity (at all interfaces)
For wave propagation in a layered medium, the stress and displacement continuity should be maintained
at all interfaces

(a) stress continuity at x = & + Ld
oa(hy + Ld,t) = an(hy + Ld, 1), (6)

where L is a positive integer representing the number of unit cells and 4; (i = 1,2), are the thickness of layer
1 and layer 2, and the d is the thickness of the unit cell with d = Ay + h»;
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(b) stress continuity at x = Ld

oa(Ld,t) = on(Ld, 1). (7)
In the same manner, velocity continuity at x = 4; + Ld and x = Ld

Ua(hl +Lda t) = Ub(hl +Ld, t)? (8)

Ua(Lda [) = Ub(Lda t)' (9)

3.2. Solution method

Before we formulate a solution method to the problem prescribed in Egs. (1)—(9) it is instructive to
garner the prevailing solutions to closely related problems. The earliest useful work is the Floquet’s theory
(1880) to a system of ordinary differential equations (ODEs) with periodic coefficients. Solutions to those
ODE:s can be written as a set of functions with the same period as the problem. Rytov (1956), Sve (1972),
Chen and Clifton (1975) used Floquet’s theory, when stress in the form of a Heaviside function is applied to
@, as shown in Fig. 2(d). These works are very important for the present development; however, the
boundary condition of unit step loading is quite different from that prescribed in Fig. 2(b) and it sub-
stantially alters the final results. In a recent paper (Chandra et al., 2002), the present authors have for-
mulated the problem as a sequence of scattering events at each of the interfaces A-B-A. .. and developed a
solution to the strength of the propagating waves as a function of time and space.

3.2.1. The late-time solution for unit step loading
We seek velocity or/and stress as a function of time at any given location. Thus the solution is of the
form v = v(x,¢) and ¢ = o(x,?). The time domain in the governing equations (1)—(9) is now converted to
frequency domain through the Laplace transform. Then by invoking Floquet’s theory and also considering
the stress and velocity continuity at x = 4; and x = d based on Egs. (6)—-(9), we can obtain the dispersion
relation (for details see Appendix A)
1

coshkd = coshihl coshihz + = (
C1 Cy 2

M—f—@) sinhihl sinhihz, (10)
P22 pPic1 C1 2
where £ is effective wave number for waves in the laminates, s is the frequency of the wave in layer A and
layer B, where A,k and ¢y, ¢, are thicknesses and longitudinal wave velocities of layers A and B, respec-
tively. Eq. (10) describes the effective sound wave number & of laminates in terms of velocities ¢; and ¢, in
each layer for a given frequency s, and is thus termed as ‘dispersion relation’.

From Eq. (10) we can obtain the phase velocity at zero frequency limit by letting frequency s — 0 (or
time ¢ — J). Thus

_ d
= 12’
|:(h_1)2 + (h_2>2 + (/716‘1 +chz> h1h2:|
& (&) p2c2 P1€1 ciey

where ¢ is the phase velocity at the zero frequency limit for the laminated system (as shown in Eq. (11)). It
should be noted that above equation is obtained by letting ¢ — oo, and consequently valid for large
propagation distance. The above solution is independent of the boundary condition, and thus Eq. (11) is
equally valid for both plate impact and unit step loading.

For unit step loading (see Fig. 2(d)), the stress boundary condition for the target plate is

a(0,1) = 6oH (1), (12)

(11)
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where oy is the applied stress on the boundary of the laminates. The solution of the stress response at x = Ld
can be obtained by evaluating the integral from the inverse of Laplace transform

y+ioco
a(Ld,;):zini / 5(Ld, )" ds. (13)

Now let a small time-scale § be defined as

0=1t—x/co. (14)
By introducing , we remove the variable x from the stress function shown in Eq. (13). Substituting Egs.
(14) into (13) and assuming p(¢,d) is the stress function with ¢, § as the variables

oo /}r+ioc e—dg(s) eth(s) ds

o) =20

, (15)

N

y—ico

g(s) = k(s)co,

h(s) = g(s) +s = k(s)co +s.

We seek an asymptotic representation of p(¢, 5) for + — oco. Such representation can be obtained by making
the integration path following a path of steepest descent through the saddle point sy at which #'(s) = 0. This
happens when s — 0. Evaluation of the integral in Eq. (15) finally gives an integral of the Airy function, so
the overall stress history at x is given by

o(x, 1) _60[%+/03Ai(s)ds} (16)

where

- (2) () "
o= {() () i) )

It should be noted that Sve (1972) evaluated an integral analogous to Eq. (15) and obtained the same
solution as above. But the above solution for unit step loading is given by Chen and Clifton’s (1975) work,
and the details are shown in Appendix A.

Eq. (16) provides the solution to the stress profile of a laminated system subjected to a unit step loading.
Though it is tempting to specify the amplitude of this step as the stress at the impact plane at the time of
impact, it will be shown later that this is not correct. Despite this, the stress response of a unit step loading
on bilaminates qualitatively displays all the essential features found in plate impact tests. Consider the case
of bilaminates with material A as PMMA with 4#; = 0.26 mm and B as copper with 4, = 0.36 mm. When
subjected to unit step loading given by Eq. (12), the stress history at x = 10 mm can be calculated using Egs.
(16) and (18). Fig. 3 shows the stress history. It should be noted that the effective speed of ¢, is the wave
velocity that corresponds to a stress level of Lay. It can be seen that the stress rises with a specific slope (as
opposed to a vertical rise for a homogenized material). Then the stress oscillates about an average stress
equivalent to the applied stress gy. In addition, the oscillations are almost harmonic with the amplitude of
oscillations decaying with time.

and
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Fig. 3. Solution to the unit step loading condition in PMMA-Cu.

3.2.2. Solution to the plate impact problem

Problem as shown in Fig. 2(c) describes the plate impact problem while late-time solution in the previous
section pertains to problem in Fig. 2(d). For a plate impact test, the body €, is continuously in contact with
Q, imposing initially a velocity boundary condition at x = 0 and at # = 0, compared to the constant stress
boundary condition in Fig. 2(d). However, for problems in Fig. 2(c) the magnitude of loading on the
boundary of the target plate keeps changing due to wave reflections in the target plate. Let us suppose o be
the stress induced at the time of impact between C and A. As shown below, additional stress increments are
induced at the impact plane due to wave reflections from interfaces.

In this section, we formulate the stress increments as a function of impedance mismatch between the
materials A and B, and between materials C and A.

Incident wave. Upon initial impact of €, on Q,, the incident wave with magnitude g is generated at the
impact instant, and the magnitude g is given by

go = P3€3P1€C100 . (19)
P33 + pic1

Second wave train. Fig. 4(a) shows the schematics of the wave traveling within the target body Q. The
incident wave first travels in material A. As it reaches the interface A-B, part of it is reflected back and the
rest of it is transmitted (shown in dotted line only for wave train ‘a’). This reflected wave arrives back at the
impact plane after a time ¢,, = 2, = 2h; /c,. Stress at the impact plane is altered by this new wave arrival
given by

AGl :I"A,B(l +I"A,C)O'0, (20)

where ra_g = % and rp c = % are the reflection ratios at interface A-B and C-A, respectively.
Here C is the flyer plate. The cumulative stress level up to the second wave train at x =0 at

t,;l = 2ta = 2h1/01 is
g1 :UQ+A01 = [I"A,B(l-i-l"A,C)—f—l]O'(). (21)

Third wave train. The propagation path of the third wave train depends on the ratio of the transit time in
layer A(¢,) and that in layer B(#,).
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Fig. 4. Multi-step loading method: (a) the wave trains that reach the impact plane from inside of the target due to reflections and (b) the
equivalent loading history of the target plate.

(@) Ift, = (’Z—i) >ty = (’Z—;), then the third wave train comes from the branch that has one reflection in layer B

and reaches the boundary at ¢ = 2¢, + 2t,, which is represented as path b in Fig. 4 (a). The stress vari-
ation due to the wave train that follows this path can be calculated as

Aoy = [ra (1 — i g)(1 +7a c)]o0. (22)
So, the overall stress magnitude up to the third wave train (still at the impact plane) is
gy =01 + AO'z. (23)

(b) Ift, = (h—1> <t = (h—z), then the third wave train follows path c, which goes through two reflections in

€1 2

layer A and reaches the impact plane at time #,, = 4h;/c,
AOJZ = VZA,BVA—C(l =+ I’A,C)G(). (24)
The overall stress is

02 = 01 + Ad). (25)

(¢) Whent, = (%) = #, = (), the propagating path of the wave trains is independent of the materials. So

the third wave train comprises waves that follow path b and waves that follow path c. As a result, the
increment of this wave trains Ag} are the sum of Eq. (22) and Eq. (24), so we have

02 = 01 + Ady = a1 + Aa, + Ad),. (26)

Fourth wave train. The propagation path of the fourth wave train that reaches the boundary of the target
plate still depends on the transit times ¢, and #,. For example, if ¢, > 2¢,, then the fourth wave train follows
path d and arrives at the boundary at time ¢,, = 2¢, + 4#,, as shown in Fig. 4, can be obtained by

Aay = [ry y(1 =73 ) (1 +rac)]oo. (27)
And the overall stress up to the third wave train g; is
g3 :O'2+A03. (28)

Also, if t, = t,, then the fourth wave train contains the waves that follow either path d or path e.

The fifth, sixth and additional wave trains that are generated later lead to stress increments Aay, Aos, . ..
Obviously the above analysis shows that the boundary condition to be imposed on the target body Q is not
a constant but varies with time as a result of reflected waves coming from the interfaces. Thus the stress
boundary condition at x = 0 comprises impact stress o (called the head wave), followed by the second wave
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train Ag, after time ¢, = 2¢,, then the third wave train Ao, at ¢,, = 2t, +2t, (if 4, > t,) or at ¢,, =4,
(if #,61,), the fourth wave train Ag; at ¢,, and so on. The exact solution should consider all these stress
increments with specific time delays as the loading condition at x = 0. Since the formulation is linear, the
late-time solution to a plate impact problem can be obtained by the method of superposition of unit step
loadings with steps corresponding to incremental stress and specific time delays.

3.2.2.1. Mean stress omean. In the present problem, the target and the impactor materials are assumed to be
of infinite thickness and hence back surfaces do not exist. Waves continue to travel in the positive x-
direction in the target and negative x-direction in the impactor. Waves that arrive at the plane of the impact
are those that have suffered multiple interactions in the target plate. The energy content of the newly
arriving waves will in general, decrease with time as more energy is being diffused away from the plane of
the impact. Thus the incremental stress contribution by late arriving waves will continue to decrease and
eventually vanish signalling the steady-state conditions. One can always identify a finite number » in a
sequence of arriving waves such that

EDC:AO','

i>n

<€, (29)

where € is an arbitrarily chosen, very small stress level. If this is true, then a steady-state stress value is
reached at the plane of the impact (in reality throughout the domains Q; and ) and this value will be
designated as oca, in the present study.

In order to confirm the existence of o 0r Eq. (29), we can examine the plate impact tests of two
different material systems comprising PMMA/Cu and PMMA/AI. Fig. 5(a) is the example of PMMA
impacting PMMA/Cu with the thicknesses 4#; = 0.26 mm and /, = 0.36 mm, while Fig. 5(b) shows the
stress history of aluminum impacting PMMA/AL In both cases, the incremental stress levels in the first few
steps are significantly larger than the subsequent steps and the total stress finally oscillates about a steady-
stress state (marked in dotted line). The analytical results were also compared with numerical results using
an explicit FEM code. FEM results (shown in thick dark lines) indicate very similar trend in the incre-
mental stresses all the way to the steady-state. This validates the existence of g, and possible hypothesis
given in Eq. (29). Thus it is possible to use the superposition of the first few steps to obtain the value of
steady-state Stress Gmean-
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Fig. 5. Comparison of the stress history at the boundary of the layered systems between analytical solution and the numerical results:
(a) PMMA impacting PMMAZ26/Cu36, and (b) Al impacting the PMMA26/A136.
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It should be noted that o is the stress at the instant of impact in a homogenous (as well as heterogenous)
system, and is also the steady-state value for the homogenous system. For a heterogeneous system the
steady-state value is omean. The ratio “ represents the amplification factor induced due to the heteroge-
neity of the body Q. Obviously this ratio is unity if Q; were to be homogeneous. Since the above procedure
of computing o, 18 tedious and not elegant, herein we explore other means of obtaining the same result.

The existence of the steady-state suggests rule of mixture as a possible effective medium theory. Thus
invoking mixture theory, the density of the target body can be written as

po =npy + (1 —n)py, (30)

where 7 is the volume fraction of the first component (material A). For low velocity loading, we can assume
that # is constant with the relation

h

Since ¢, represents the effective sound velocity in the laminate, the equivalent impedance of the mixture is
Doco- From the stress continuity at the impact surface, we have

Omean = P3C3 (UO - up) = f)ocoup» (32)

where u,, is particle velocity. By eliminating u,, the mean stress can be written as

P3C3POCOUO
1 = 33
mean 01 T poCO ( )

From Eq. (19) and (33) we can obtain the normalized mean stress as

Omean _ P3C3 + ,i)lcl ﬁOCO ) (34)
G0 P363 7+ Poo Pr€1
The above relation has also been plotted in Fig. 5(a) and (b) and shows that Eq. (34) is capable of
determining oy,.,, Without actually computing many incremental stress levels.

3.2.2.2. Multiple-steps loading. The determination of o, though very useful in computing the steady-state
response of heterogeneous material, still cannot capture the wave structure that precedes the steady-state
value. For this we still need to use multiple steps as outlined below. We can now propose a solution that
comprises # steps in the stress loading function at the plane of impact due to first n wave trains. In order to
make the final steady-state reach ., We set

AO-nfl = Omean — Opn-2- (35)
For example, for a four-step method (when n = 4), the fourth step is specified by
A3 = Omean — 02- (36)

The whole loading history at the impact plane is shown in Fig. 4(b). Now we consider each step as a case of
unit step loading with its amplitude and starting time determined by the scattering process. Through
superposition, the solution can be written as

GO(X’ t)a CL() StE<ty +Co
oo(x, 1) + Aoy (x, 1), to +2 SIS Jr;ia

olx,1) = ao(x,t) + Aay(x,t) + Aoy (x, 1), Lo +% <t < ta-; +5 > 37
oo(x, 1) + Aoy (x, 1) + Aaa(x,t) + Aoz (x, 1), t,, + o<t
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where
1 B
ao(x,t) = ap [ + / Ai( —s) ds} ,
3
and
1 B
Ag;(x,t) = Ag; {5 + /0 Ai( —s) ds}, j=1234. (38)

The above equations can be solved similar to Eqs. (16)—(18) (see also Appendix A, (A.24)—(A.26)). The
solution so obtained is usually referred to as the late-time solution. Late-time solution should rather be
called as far-field solution and should be distinguished from steady-state solution as discussed below.

3.2.2.3. Application of the late-time solution based on elastic analysis. As shown in Section 3.2.1, the late-time
solution predicts the stress history at a far-field arising from the contribution of the main disturbance, when
the frequency s — 0. Theoretically, the late-time solution is only valid when ¢t — oo and x — co. However,
in order to use the analytical solution in practical problems, one would like to identify a distance x > x* for
which the solution is reasonably valid. If we decompose the incident square wave into Fourier series, the
coefficients of the terms with higher frequencies are increasingly smaller. Also, dispersion relation given by
Eq. (10) indicates that the higher the frequency, the lower the phase velocities (Bedford and Drumbheller,
1994). Thus the effect of low frequency predominates at a large x distance over the high frequency content,
and hence the latter can be neglected in preference to the former. Thus for sufficiently large x, the head of
the pulse can be approximated by Eq. (16). Based on the high frequency concept discussed above, we can
identify the location x* where the head wave dies out. Here, we refer to head wave as the first wave
travelling in the heterogeneous medium with successive transmissions. Thus for location x > x* late-time
solutions presented in this paper can be used. For x < x*, we need to consider the effect of all the interacting
waves as discussed in our earlier paper (Chandra et al., 2002). Additionally, from the hypothesis of x*, it is
clear that x* in a system with high impedance mismatch (equivalent to high r, g), is much smaller than that
in another system with small r4_g, if their geometric parameters are the same.

Having determined the region where late-time solution is valid (x > x*), it then becomes important to
find out how many steps » are required for obtaining the stress response with a specified level of accuracy.
At a fixed location, our numerical study shows that the accuracy depends on | > Ac;|, which in turn is
affected by material heterogeneity. One measure of heterogeneity factor is impedance mismatch. It is found
that systems with very high impedance mismatch between materials A and B within the target (high 74 )
yield small | Y Ag;|. For systems with high r, g, one step (n = 1) solution seems to produce acceptable
result. In the case the equivalent loading condition is given by

0(07 t) = omeanH(t)' (39)

In the above equation it is implied that o, is applied at ¢+ = 0 rather than the impact stress, go. In truth
Omean 18 Teached at time ¢ > 0, and this effect of time is ignored by Eq. (39). For cases with high 7, g, this
assumption implies that the time to reach 6., is small which is understandable. Thus for cases with high
ra_p We can substitute oy by opean in Eq. (16) to obtain the solution for plate impact as

(x,1) = Gumean B /O BAi( — ) ds} . (40)

In order to validate the above ideas, we select PMMA/ALI system with a high impedance ratio of ry g = 0.71
and examine the effect of number of loading steps n on the accuracy of the solution. Fig. 6 shows the stress
response at x = 10 mm (impact conditions identical to that in Fig. 5(b)), using 1, 3 and 5 steps. Numerical
results using an explicit finite element code is also presented for comparison purposes. Fig. 6 clearly shows
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Fig. 6. Comparison of solution for Al impacting PMMAZ26/AI36 at x = 10 mm. Comparison between FEM result and analytical
solution using n = 1, 3, 5, respectively.

that one step solution gives sufficiently accurate results for this case. Though the results are not shown here,
when impedance ratio ra_p is small (for example, below 0.4), the use of one-step method may not be
sufficient and higher number of steps are needed.

All the analyses presented so far, assume that the impact process generates a single elastic wave that
travels away from the impact plane. When velocity of impact increases, the wave enters an elastic—plastic
regime and with further increase the wave becomes a shock wave. For both these cases, the approaches
presented above need to be modified. For the case of shock wave, we present the necessary modifications in
the next section.

3.2.3. Approximate solution for shock loading

The solution given in Section 3.2.2 assumes that the constituent layers are linear elastic and isotropic.
When the loading strength is much higher than the Hugoniot Elastic Limit (HEL), shock waves are
generated. Shock response of materials is a highly nonlinear process and is extremely difficult if not
impossible to obtain purely analytical solutions. However, an approximate explicit solution based on the
previously developed elastic solution can be obtained for shock loading cases by invoking hydrodynamic
treatment ignoring shear stresses. It is important to note that we are dealing with shock response and not
the elastic—plastic response which is of two-wave structure. In shock loading cases, stress non-linearity
depends on the strain. And the slope of the conventional pressure-particle velocity plot represents shock
impedance. We extend the elastic analysis to shock response by incorporating the non-linear effects through
computing shock velocities of the wave trains and superimposing them. Even though the material response
of the constituents is different in shock regime, the structural response of the laminate remains similar to the
elastic regime. For example, both elastic and shock waves are of one-wave structures. Also, the wave
scattering processes at interfaces are similar following the rules of reflection and transmission. Most
importantly, it can be seen from previous experiments (Section 2) that an approximate steady-state can also
be reached in a given layered system. This can be partly explained by the fact that the cumulative amplitude
of the waves remains unchanged during multiple wave interactions or during reflections at interfaces.

For laminated systems under shock loading, velocities of the shock waves depend on the pressure.
Therefore, it is necessary to relate shock velocity, density and volume to the particle velocity by means of
equation of state (EOS) (Meyers, 1994). A general EOS takes the form

Us:C0+S1up+S2u§+Sgug+---, (41)
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where S, S, and S; are empirical parameters. Cy is the sound velocity in a given material under zero
pressure. For most metals (without porosity and phase transformation), linear relationship between U; and
u, is sufficiently accurate and EOS assumes the form

U, =Cy+ Slup. (42)

For materials other than metals, such as polymers, higher order terms need to be included in the EOS. The
density under high pressure (p!) can no longer be approximated as the original density. It is directly related
to the loading strength represented by particle velocity u,; with
1 )
p;:mph i=1,2,3. (43)

Usi

In the same way, the volume under high pressure (7)) is related to u, by
V= (1—”U—P)V i=1,23. (44)

Therefore, in plate impact problem, according to the above equation, the thickness under shock loading
condition (/}) will be

K= (1-%)@, i=1,2. (45)
New impedance ratio is approximately (assuming that material 2 is harder than material 1)
R =0l (46)
pll Usl

It can be seen from Eqgs. (41), (42), (43) and (45) that wave velocity, thickness and density for the laminates
subjected to shock loading, all depend on the particle velocity, while they remain constant for elastic re-
sponse. Though velocity is not continuous across a strong shock front, it can be assumed to be continuous
for shocks with moderate amplitude which is the case considered here. Therefore, by substituting the Uy, p!
and 7, (i = 1,2) into Eq. (11), we obtain the late-time velocity for shock loading condition (U;) as

b, = 1 . (47)

w2 W\ 2 L\ R 'z
|:<U:2> +<U;2) +(R/+F>UsiUz>2

Similarly, we obtain the mean stress level for a layered system (0).can) DY assuming that this layered system
is equivalent to a mixture with impedance p,U;. Similar to Eqgs. (32) and (33), we have

PolspsUss (48)

Thus we have obtained a/,,, (Eq. (48)), the steady-state stress value for shock loading conditions analogous
to omean for elastic loading. However, we need to be very cautious in selecting the number of steps (or wave
trains) since in shock loading conditions different wave trains travel with different velocities. It is possible
that a wave train can travel faster than its predecessor and may even overtake it. This phenomenon in shock
loading conditions may dictate the use of more steps for capturing this effect.

For an observer at a given location, the head wave propagates with longitudinal velocity into uncom-

pressed media. So for a given location x(x = Ld), the arrival time of the head wave is
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o nd  (1—n)d
tgg_;(Usl)‘,-—'_ (U, )j J (49)

where (Us1),, (Us2),, are the sound velocities of waves in previously uncompressed materials A and B within
Jjth unit cell, and # is given by Eq. (31). Immediately behind the head wave, the high pressure o}, is achieved

) _ P3Usp Usivo

Oy =——"—"——. 50
0 p3Us3 +p1Usl ( )

Thus the second wave train can travel faster than the head wave since the material is highly compressed
given by Eq. (50). As shown in Fig. 4(a), the second wave train is generated by one reflection inside first
layer (in Material A), and reaches the impact surface after A¢ from initial impact:

Al +—, 51
Usl Ull ( )

where Uy, is the wave velocity in material A in compressed media after the wave reflection in the first A-B
interface. For a soft to hard arrangement in the target plate (p,c; < p,c3), the pressure in the first layer
increases after the reflection, so we have U;; > Uy;. Similarly, the second wave train will travel faster than
the head wave in other layers. As shown in Eq. (51), the time interval between the second wave train and the
head wave is determined by the thickness and wave velocity of the first layer before and after the arrival of
the head wave. The time oo when the second wave train arrives at location x is given by

ta‘]’ = A + FZI ((in) + (((U52);;’12) >, (52)

). o
$17),00

where (Us1); 0 and (Us), 0 represent the shock velocities in materials A and B in jth unit after initial
compression, respectively. The propagation distance x where the second wave catches up with the head
wave depends on head wave velocity, time of origin of second wave and the compressive stress in the media
as given by Eqgs. (52) and (49). As a matter of fact, it can be shown that this ‘overtaking’ effect is critical for
capturing the peak stress in shock wave regime.

Thus the steps in the analytical procedure for determining the stress response under shock loading

conditions are as follows:

1. The shock velocities Uy;, and the thickness 4; should be calculated by considering EOS, as shown in Eqgs.
(41)—(45).

2. The mean stress g/, should be computed using Eqs. (47) and (48).

3. Incident stress in the shock regime oj, is given by Eq. (50). Incremental stress values at the impact plane
Aoy, Ad), ... should be calculated using o in Egs. (21) and (23), unless modification of reflection ratio is
needed based on velocity variation with pressure.

4, The number of steps, n should be carefully chosen depending on the location x for which the stress is
computed, »n should be at least equal to the number of steps needed to reach the first peak from o at
the impact plane.

5. The effect of ‘overtaking’ of a successor wave over a predecessor wave should be evaluated by comparing
Eqgs. (49) and (51). When overtaking takes place, the time interval between these two waves are set to
zero in Eq. (37).

3.3. Modeling plate impact experiments

We first demonstrate the need to use gpe,, for solving plate impact problems rather than gy, the stress at
the impact plane at the time of the impact. It is also shown that the ratio ‘7‘3% can be quite high and depends
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on a number of heterogeneity factors including the volume fraction of each constituent, the material of the
impactor, and the velocity of impact. In the next section, we examine the shock velocities of each of the
material in the layered system and how they affect the effective shock wave velocity. It is then shown that
the effective material heterogeneity depends on the combination of the materials that comprise the layered
system. Here, we apply the developed method to simulate plate impact tests corresponding to the test
configuration used by Zhuang (2002). In the first experiment, a flyer made of polycarbonate (PC) impacts
on a target made of alternating PC and glass (GS) with velocity of 1079 m/s, as shown in Table 2. The
thickness of the PC and GS layers are 0.37 and 0.20 mm, respectively. In the second test, also shown in
Table 2, a metallic impactor (aluminum) impacts the same composite system with an impact velocity of
1160 m/s. The comparisons of the experimental data and the analytical solutions are given in Fig. 7. It is
clearly seen that very good agreement has been obtained between these two results by matching the detailed
structure.

3.3.1. Mean stress Gmean

When a heterogencous target material (see Sections 3.2) is subjected to plate impact test, oyean 1S the
steady-state stress. In some sense ”"““ represents the heterogeneity of the target system. The heterogeneity
effect given by Eq. (34) is plotted i in F1g 8, which shows the magnitude of #2 for PMMA (matrix) based
composites systems. Various polymer and metallic materials are used to reinforce the composites. The
figure shows the variation of “mn with varying volume fraction of PMMA in the composites. Two sets of
data are shown in the figure: the data in the solid line are for cases when the flyer plate is PMMA, while the
data in the dashed lines are for the cases when the flyer plate is aluminum. It can be seen from the figure that
"";—0 can vary from 0.9 to 4.8. It should be noted that the maximum values of ”“;;“" shown in this plot assumes

Table 2
Configurations of Experiments 1 and 2 (Zhuang, 2002)
Experiments A B C Impact velocity (m/s) hy (mm) hy (mm) Gauge location x
1 PC Glass PC 1079 0.37 0.20 6.44
2 PC Glass Al 1160 0.37 0.20 3.55
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Fig. 7. Comparisons of the experimental data and the analytical solutions in layered PC/GS: (a) Experiment 1 and (b) Experiment 2
(Zhuang, 2002).



X. Chen et al. | International Journal of Solids and Structures 41 (2004) 4635-4659 4653

5

a5 — PMMA-PMMA-PC
'4 N - - - - AI-PMMA-PC
G mean a5 u —5— PMMA-PMMA-AI
O, '3 . e, - -0~ - A-PMMA-AI
8 . Te — o PMMA-PMMA-Cu
 25F B. “e .
B s e - -o- - AI-PMMA-Cu
g 2 “e .
©
g a5t
2 1t
05 f
0 n PR 11 1 PR 1 PR 11 PR PR 1 1 n

0 02 04 06 0.8 1
Volume fraction of PMMA

Fig. 8. The normalized mean stress as a function of volume fraction in different systems.

the volume fraction of PMMA cannot be zero. "';““ ratio represents the amplification in the stress levels
reached within the material compared to that at the time of impact, and the figure shows that the ratio can
be very high. Since this ratio can be very high, it clearly demonstrates that only e, should be used to
model the steady-state response of a plate impact problem. It should be noted that while o, is dictated by
the heterogeneity at the impact surface (materials A and C) and of course the impact velocity, the mag-
nitude of o depends additionally on the impedance mismatch of the components of the target materials
(A and B) and their volume fraction.

Since the magnitude of oy uniquely determines the steady-state stress in the materials subjected to
plate impact loading, it is interesting to explore whether other theories can lead to the same result. For this
purpose we examine Dremin’s mixture theory. As shown in Appendix B, the same effective sound speed for
the equivalent mixture can be obtained based on this theory. So by obtaining the same effective density and
sound velocity in the mixture, the same expression of mean stress can be obtained by applying Egs. (32) and
(33). However, as mentioned in Section 2, except for the value of mean stress, mixture theory cannot predict
the complete structure.

3.3.2. The effect of equation of state

When velocity of impact is high enough to generate shock waves, then we need to use equation of state
(EOS). When the target plate is made up of multiple materials with their individual EOS, the application of
EOS of the system is not straightforward. EOS can be expressed as a variation of shock velocity with
particle velocity. Fig. 9(a) shows shock velocity, Us as a function of particle velocity, u, for a few materials
of interest. The slope of the curve % EUS is different for different materials; typically the slope varies linearly for
metals and nonlinearly for polymers Thus the parameter S; in Eq. (42) determines the slope for metals.
While S) plays a major role, S, and S; or even higher orders cannot be neglected for polymers. It is clear
from this figure that the slope 5, % increases the fastest for polycarbonate (PC) while there is negligible slope
for glass. The slopes of Cu, Al "ind PMMA show only moderate values.

It should be noted that the impedance mismatch for a pair of given materials not only depends on the
relative magnitudes of shock velocities but on the densities at a given state. For materials under shock
loading conditions, apart from the velocities there is a concurrent increase in densities with particle velocity.
Since impedance is the product of density and shock velocity, and since both increase with particle velocity,
absolute value of the impedance of a given material increases. However, since a Y and the rate of density
change is different for different materials, impedance mismatch of a given pair materials may increase or
decrease. Fig. 9(b) shows the impedance mismatch of combinations of materials (described in Fig. 9(a)) with
particle velocities. It can be clearly seen from the figure that the impedance mismatch is not a constant for a
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Fig. 9. The effect of EOS on velocity and impedance mismatch.

given material combination but is a function of particle velocity and hence the velocity of impact. For
example, the impedance of PC-GS reduces significantly with the increase in particle velocity. However, for
other systems considered here the variation is less significant.

It can be seen from Fig. 7 that the mean stress obtained from analytical solution agrees well with the
experimental results for both cases. It should be noted that by incorporating EOS, the shock velocity and
the density generally increase depending on the loading strength. As a result, the mean stress level obtained
based on Section 3.2.3 can be significantly higher than the mean stress obtained using just elastic analysis
(showed in dotted line). The elastic solution does not even come close to the experimental results clearly
emphasizing the need to use EOS. There is yet another critical difference between elastic and shock loading
conditions in terms of the peak stress. In the elastically loaded condition, the first peak has a magnitude of
1.274 0yean When the steady-state stress iS gppean, While this is not true for shock loading. It is important to
note that peak stress may be more critical than mean stress in determining the fracture or damage of
materials. Fig. 7(a) and (b) shows that the first peak stress in both the cases are much higher than 1.274
Omean- This anomaly can be explained by the fact that wave trains in compressed media travel faster and the
second wave may be able to overtake the first wave depending on the distance of propagation, as discussed
earlier. Thus using a single step method may not be adequate for shock loaded cases while it may be
acceptable for elastic loadings. The matching of experimental and analytical results is quite good, in terms
of arrival time, peak stress, frequency of the oscillations, and mean stress.

4. Summary

In this paper, an analytical solution to the problem of plate impact in layered heterogencous material
systems has been developed. The plate impact problem (Fig. 2(c)) has been clearly shown to be quite
different from the problem of unit step loading. The stress boundary condition in a plate impact test of a
heterogeneous layered target at the plane of the impact continuously varies due to multiple wave inter-
actions inside the target plate. The work can be briefly summarized as follows.

o A steady-state stress value, o,..n, has been identified for the case of heterogeneous target system. This
Omean 18 different from the value at the time of impact gy, and the difference depends on the degree of
material heterogeneity.
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The ratio "‘;% can be quite high and depends on the volume fraction of constituents, material of the flyer
plate and the velocity of impact among others.

The magnitude of oy, has been determined using wave dispersion relation. It was further shown that
the same relationship can also be alternatively obtained using Dremin’s mixture theory.

A late-time solution to the problem of plate impact on a heterogeneous layered material system has been
developed. The spatial range for which the late-time solution is valid (x > x*) has been identified.

The solution procedure for elastic loading has been formulated using multiple steps. The conditions for
using a single step method have also been identified.

e The solution method for shock loaded cases has also been outlined.
e The developed method has been validated by comparing the analytical results with numerical and experi-

mental data. The comparison is very good.

Appendix A. The late-time solution for unit step loading

Take Laplace transform of Egs. (1)-(3)
0a (x,s)

where

- 0;50(x,s), (A1)
Gvg"s — —sE(x,s) =0, (A.2)
X

o(x,s) = E’e(x,s). .

? A3
The solution of equations of Egs. (A.1)-(A.3) are in the form

v(x,s) = aqe” 4+ be ", .
kix b kix A4
5(x,s) = a; <Skpﬁ>ek’x + b,-( - ‘Vkp_">e-kﬂ, (A.5)
ki = ki(s) = ci (A.6)

and ¢; is phase velocity given by

Fe112
Ci = |:—I:| .
Pi

For ordinary differential equations with periodic coefficients, Floquet theory can be applied

a(x,s) = eG(x — d,s), (A7)

o(x,s) = eWp(x — d,s). (A.8)

By considering the stress and velocity continuity across x = 4y, let L = 0 in Egs. (6) and (8), then

aleklhl + ble_klhl _ azekzhl =+ bze—kzhl’ (A9)

AR P\ ki _ P2\ oy P2\ —ioh Al
a1<k1)e bl(kl)e a2<k2>e bz(k2)€ . ( O)
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Stress and velocity continuity across x = d

ekd(al + bl) = azekzd + bzeikzd, (All)
kd P1 P1 P2 hod P2 okad

——b— )= 24— by 24, A.12
¢ (“1 3 1k1> CRe TS (A-12)

Egs. (A.9)-(A.12) have non-trivial solutions only when the determinant of the coefficients is equal to zero.
This condition yields the transcendental dispersion relation

cosh kd = cosh kyhy cosh kyhy + = <p161 + ,l)zCz) sinh kA, sinh kyh,. (A.13)
2\ pyc2  picy
where & is wave number for the laminates, k; and k; are frequencies for layer A and layer B, where 4, 4, and
c1, ¢; are the thickness and the longitudinal wave velocities of the layers respectively. And d is the thickness
of the unit cell, with d = h; + hy, as shown in Fig. 2(c).

For steady wave with frequency s, the dispersion relation can be written as

1
coshkd = coshihl coshihz 4= (E + pZCz) s1nh hl s1nh hz (A.14)
c 2 2\ pca pic
Therefore, the phase velocity for zero-frequency limit ¢, is obtained

d

2 2 ] ‘ 12"
(7 () () )
cl 5] P2C2 pic1 ) ciex
In order to get the solution for plate impact loading, it is convenient and necessary to show the solution for

the problem of unit step loading. For unit step loading, the boundary condition for the target plate can be
written as

a(0,1) = aoH (2). (A.16)

Its corresponding Laplace transform is

(A.15)

Co =

(0,5) = ? (A.17)
The transformed stress at distance x = Ld can be obtained by Floquet theory

o(Ld,s) = ek<f>w/2? (A.18)
The late-time solution can be obtained by the asymptotic evaluation of the integral

o(Ld, 1) = ﬁ / :O 5(2Ld, 5)e" ds. (A.19)
Now introduce a small time scale

o=t—x/c. (A.20)

By introducing J, we remove the variable x in the stress function in Eq. (A.19). Substitute Egs. (A.20) and
(A.18) to Eq. (A.19) and assume p(¢,0) is the stress function with # and J being the variables,

yHioo —dg(s
p(t,é)zg—o./ eids, (A.21)

21 y—ico
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where
g(s) = k(s)co,

h(s) = g(s) + s = k(s)co + s.
For late-time solution, we seek an asymptotic representation of p(¢,d) for t — oo with fixed 6. Such rep-
resentation can be obtained by making the integration path follows a path of steepest descent though the
saddle point sy at which #'(s) = 0. This happens when s — 0. The expansion of about the saddle point yields
(for elastic cases)

h(s) = h”’3(!0) s?, (A.22)

where

ro- {2 (i) )

So the integral of Eq. (A.21) becomes

1 g [ 0@
p(t,0) =500+ 2—7‘; : % ds. (A.24)

Evaluation of the integral in Eq. (A.24) will finally give an integral of the Airy function.

o0, 1) = 0o B + /0 * i) ds} , (A.25)

where

() )

The above solution for unit step loading follows Chen and Clifton’s (1975) work. Also, it should be noted
that Sve (1972) evaluated an integral analogous to Eq. (A.21) and obtained the same final result.

Appendix B. Dremin’s theory in finding effective wave speed

In this theory, it is assumed that the specific volume of the shock-compressed mixture is equal to the sum
of the specific volume of its components, obtained at the same pressure by separate shock compression

V=ali(P)+ (1 = o)lh(P), (B.1)
where P is the pressure or stress, //,¥; and V5 are the specific volumes of the mixture, materials 1 and 2,
respectively. o is the mass fraction of component 1. Differentiating the above equation with respect to
pressure P, we obtain

v dn

ap~*ap (-

dn

= (B.2)
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In the above equation % represents the slope of Hugoniot curve of the mixture which can then be equated
as follows:
dv V2
—_— = B.3
dpr U2 (B-3)

The above Eq. (B.3) can be written for each of the constituent materials 1 and 2, and that of the mixture.
Now using those definitions in Eq. (B.2) we obtain the shock velocity U; of the mixture

b, — 4 (B4)

2"
o (1—a)
[(psmz * <szsz>2}
In elastic region, the effective volume in the above equation is given by
1 hy + hy

V==
Po  Pihy+ poha

(B.5)

Also, conservation of mass holds for each constituent as well as for the mixture, so the mass fraction of the

material 1 is given by o = %. By substituting o and the specific volume ¥ in Eq. (B.5) into Eq. (B.4), we
have

. hi+h

U, = L . (B.6)

2
{(mhl + pyha) (ﬁifé + %’% )}
1 272

1
By expansion of the terms in the denominator and rearrangement of these terms, it is found that

) I+
0, — L — . (B.7)

P b3 , , 1/2
[CRICREa
cl (&) 151%) pPic1 cie
In the same manner, it can be shown that under shock loading condition the same velocity is also obtained
through these two different theories.
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