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Abstract

An analytical solution to the problem of one-dimensional high amplitude wave propagation in layered heteroge-

neous material systems has been developed, based on Floquet’s theory of ODEs with periodic coefficients. The problem

is formulated based on a conventional plate impact experimental configuration. In a plate impact test, the boundary

condition at the plane of the impact varies with time as a result of multiple wave interactions at the interfaces of the

layered target material. The approach of the solution is to convert the initial velocity boundary value problem to a time-

dependent stress boundary value problem and then obtain the stress time history by means of superposition. By taking

this approach, we explicitly consider multiple wave interactions at the heterogeneous interfaces. A characteristic steady-

state stress rmean for heterogenous material has been identified which is quite different from r0 the stress at the initial

time of impact. It is shown that rmean can be obtained by summing up the stress increments at the interfaces or by using

mixture theory. The late-time (steady-state) solution procedures for the plate impact problem are presented for impact

velocities corresponding to elastic as well as shock wave loading conditions. Results from the analytical model compare

well with both numerical results obtained from a shock wave based finite element code and experimental data.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In order to characterize the dynamic behavior of materials under impact loading, diagnostic experiments
are usually carried out using a plate impact test configuration under a one-dimensional strain state. The

plate impact test serves the exact purpose of characterizing materials under high-pressure dynamic loading,

analogous to that of uniaxial tensile tests under quasi-static loading conditions. In a plate impact test, the

stress response is usually measured at intermediate locations within a given specimen using embedded
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manganin or PVDF gauges, while the velocity measurements are typically carried out using a velocity

interferometry (VISAR) system at the stress free back surface of the target plate, or at the interface of a

transparent window glued to the back of the target plate. These well-structured wave profiles in metals and

ceramics provide a wealth of information about the shock response of the material. Since engineered
composites such as glass reinforced plastic (GRP) comprise complex microstructures, wave scattering oc-

curs due to multiple wave interactions at interfaces. The description of scattering process in a real com-

posite is very complicated and extremely difficult to analyze. It has been recognized that a periodically

layered system offers a practical configuration to investigate the effect of heterogeneity of general com-

posites. Wave propagation in a periodically layered medium has been studied extensively for decades.

Historically, theoretical work on wave propagation studies in layered systems has followed the mathe-

matical solution to ordinary differential equations with periodic coefficients attributed to Floquet that dates

back to 1800s. As early as 1956, Rytov obtained a dispersion relation for one-dimensional longitudinal
waves propagating in a periodic laminate. Later, by using the effective stiffness theory Sun et al. (1968)

obtained the dispersion relations for harmonic waves propagating parallel and normal to the direction of

the layering. Peck and Gurtman (1969) studied the wave propagation parallel to the layers, and obtained

the asymptotic solution through approximation under similar loading conditions. Sve (1972) and Chen and

Clifton (1975) predicted the late-time asymptotic solutions and the wave front solution for wave propa-

gation normal to the layers for unit step loading at the boundary. Ting (1980) developed an analytical

solution for unit step loading for viscoelastic layered media at finite locations.

The above-mentioned analytical works of wave propagation in layered material systems have either used
a sinusoidal wave loading, or unit step loading. There are no known analytical solutions for plate impact

loading conditions. The main objective of this paper is to present a solution methodology based on Flo-

quet’s theory for plate impact loading problems. The background section presents a brief description of the

plate impact test configuration as well as a summary of earlier work relating to wave propagation analysis

for layered material systems. In Section 3 we develop the basic formulation for plate impact problem and

propose solution procedures. In Section 3.3 we compare the analytical results with experimental data. In

the final section we summarize the paper.
2. Background

A schematic of the compressive stress history (measured using an embedded stress gauge) is shown in

Fig. 1. The portion of the plot indicated by the letter A represents the arrival of an elastic shock wave from

the impact plane. The material particles are compressed elastically (A–C) until the relatively slow moving

plastic shock wave arrives at the given location. Typically, the shape and time duration of the portion A–C

depends on the strain rate sensitivity of the material and the distance from the impact plane. If the shock
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Fig. 1. Schematic wave profiles of homogeneous metals and layered composites for a finite thickness flyer plate: (a) homogeneous

metals and (b) layered composites.
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amplitude is below the elastic limit, the profile typically follows portions AC–CE. The rise time is usually of

the order of nanoseconds for metals and ceramics. If the shock amplitude is above the elastic limit, then the

plastic shock takes the stress to the peak between points D and E. The peak level remains the same until the

elastic unloading wave arrives from the back of the flyer plate. Often, the release portion of the wave profile
exhibits a typical structure that consists of elastic release (E–F), transition (F–G), and plastic release (G–H).

Fig. 1(b) shows schematic of a typical shock response of a layered composite system. Interpretation of this

profile is extremely difficult without a careful wave analysis. Since stress or velocity profiles is a result of

superpositions of numerous wave reflections at the interfaces, the stress level at R1 is an intermediate stress

state. A1R1 shows a dispersed wave structure with longer rise time compared to the rise time in a target plate

of a homogeneous material. The oscillatory portion R1–E1 at the peak level indicates arrivals of several

release and compressive waves. The pulse duration becomes a function of not only the thickness and wave

speed in the flyer plate, but also on the number of interfaces and wave speeds in the heterogeneous system.
In layered systems, planar interfaces interact with the incident shock wave generating transmitted and

reflected waves, their amplitudes being determined by the impedance mismatch. This factor should be

explicitly considered in evaluating the shock response of layered systems.

Table 1 summarizes major past work that studied wave profiles in alternating layered systems using the

plate impact test configuration. Lundergan and Drumheller (1971) numerically simulated the response of a

layered material system with varying thickness. The simulated particle velocity response exhibited a slow

rise time and an oscillatory behavior as observed in experiments. The idea of replacing the dispersive,

heterogeneous composite with an equivalent homogeneous dissipative continuum was first proposed by
Barker (1971). A general nonlinear Maxwell (viscous) model was proposed to simulate stress relaxation

from an instantaneous state of the mixture to the equilibrium level. In addition, Barker obtained oscillatory

stress solutions by explicitly modeling each layer using a stress wave propagation based one-dimensional

code. Barker validated the viscous model for the composite equation of state by successfully matching the

averaged stress response in the oscillations from the code. Barker et al. (1974) further validated his theory

using results from experiments in which a low volume fraction of aluminum was used in a PMMA/alu-

minum based layered system. However, in general this model fails to predict the structure of the stress

waves (rise time, peak stress and oscillations).
While carrying out impact experiments on layered Cu/PMMA systems, Oved et al. (1978) (see Table 1)

noticed significant oscillations in the stress wave profiles. As can be seen in the corresponding figure, the

oscillations occur approximately about a mean stress. When the amplitude of oscillations is substantial,

Oved pointed out that oscillations do not vanish with distance of propagation in the shock regime. Con-

sequently, oscillations should not be ignored but it should be explicitly modeled. More recently Kanel et al.

(1995) confirmed the harmonic oscillations in experiments on a Cu/PE system. They proposed a relaxation

model similar to that of Barker, though the physics behind the models is quite different. The main thrust of

Kanel’s approach was to obtain the nonequilibrium pressure (the difference between the Rayleigh line to the
final state and the equilibrium pressure corresponding to the Hugoniot curve) by assuming an empirical

kinetic relationship.

Dandekar and Beaulieu (1995) reported results from plate impact tests on a woven fabric composite. The

measured VISAR signal revealed an oscillatory peak stress behavior and a long rise time. Boteler et al.

(1999) further conducted a combined experimental and computational study on stress attenuation and

dispersion in GRP laminates. The stress profiles at three different distances from the impact plane were

measured using embedded PVDF gauges. They observed that the rise time increased and the average peak

stress reduced with propagation distance. Some oscillations were observed at the peak stress in the first
gauge, which was closer to the impact plane. Stress histories at locations significantly away from the impact

plane showed no oscillatory behavior at the peak level. Their computational modeling using a three

dimensional viscoelastic model matched the attenuation of the stress, but failed to reproduce wave dis-

persions.



Table 1

Review of major past work done in studying wave profiles in alternating layered systems under plate impact

Author/year Material system (target) Experiment/

simulation configuration

Observations or results Method/model

Lundergan and

Drumheller (1971)

Barker et al. (1974) Viscous model

(Maxwell model)

Oved et al. (1978) Numerical

analysis +

experiments

Kanel et al. (1995) Viscous model

based on the

Hugoniot curve.

Clements et al. (1996) Unit cell

method
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Table 1 (continued)

Author/year Material system (target) Experiment/

simulation configuration

Observations or results Method/model

Boteler et al. (1999) 3D Linear

viscoelastic model

Dandekar and Beaulieu

(1995) and Espinosa et al.

(2000)

Cohesive zone

model + layered

configuration

Zhuang (2002) Applying

Dremin’s mixture

theory for

analysis
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Clements et al. (1996) proposed a modified unit cell method to model wave propagation in alternating
Epoxy and Epoxy-graphite system. Recently, Zhuang (Zhuang, 2002; Zhuang et al., 2003) conducted a

thorough experimental investigation by performing a large number of plate impact experiments in selected

material systems involving alternate units of either polycarbonate and stainless steel or polycarbonate and

glass. Both the quasi-harmonic oscillations and the finite rise time were observed in different systems. The

effects of impedance mismatch, interface density, propagation distance as well as loading strength were

examined as the basic parameters in his experiments.

In the study of wave propagation in solids, scattering, dispersion and attenuation play critical roles in

determining the thermomechanical response of the media. These phenomena can be attributed to a number
of nonlinearities arising from the wave characteristics, loading conditions and material heterogeneity (at

various spatial scales ranging from nanometers to a few millimeters). The nonlinear effects in general can be

ascribed to impedance (and geometric) mismatch at various length scales as often encountered in composite

material systems. In addition, material nonlinearities (inelastic effects) can arise due to void nucleation and

growth, microcracking, and delamination. The strong shock waves generated under high velocity impact

loading often induce nonlinear effects in the deformation and failure behaviors (Nesterenko, 2001).

Present authors (Chandra et al., 2002) showed that the observed structures in the measured stress wave

profiles in layered systems under low velocity impact loading condition could be explained through
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modeling the scattering effects at planar interfaces. However, for high velocity impact loading conditions, it

is fully realized that material nonlinear effects may play a key role in altering the basic structure. Therefore,

it is important that models that describe the wave structures include equation of state for each material in

the periodic layered system, in the shock wave regime.
3. Problem formulation and solution method

3.1. Formulation

Consider two semi-infinite bodies X1 ð�1 < y; z < 1; 06x < 1Þ and X2 ð�1 < y; z < 1;�1 <
x < 0Þ such that they are initially separated and then impact each other with velocity ~v ¼ v0~i in the x-
direction, as shown in Fig. 2(a). Without loss of generality, we can assume X1 to be fixed in space and X2

impacting on the entire x ¼ 0 plane. Upon impact, stress waves are generated on a plane parallel to the

impact plane and travel in the negative x-direction in X2 positive x-direction in X1 with wave velocities

determined by the material properties of these two bodies. The amplitude or strength of the stress wave is

determined by the velocity of impact v0 and acoustic impedances of X1 and X2. As the waves propagate
away from the impact plane, bodies X1 and X2 are in compression with a uniaxial state of strain ex 6¼ 0 and

all other components eij ¼ 0 (for i; j ¼ 1; 2; 3 except i ¼ j ¼ 1). The problem is to find the state of strain and

stress in the compressed regions, given the velocity of impact and the material properties of the two bodies.
Fig. 2. Schematic of the configuration for impact problem: (a) two half spaces of homogeneous materials; (b) general plate impact

problem of layered systems; (c) plate impact problem of two half spaces with target being layered and (d) the layered media under unit

step loading.
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This plate impact problem has long been well understood and successfully modeled when X1 and X2 are

homogeneous. What we seek here is a solution to the problem when X1 is laminated as shown in Fig. 2(c) as

a precursor to the practical plate impact test shown in Fig. 2(b). In the plate impact test (Fig. 2(b)), X2 is

called flyer plate or the impactor impacting on X1, termed target plate. The target plate is made of alter-
nating layers of materials A and B with the impactor made of a homogeneous material C. All the materials

(layers) are assumed to be homogeneous and damage free with known mechanical ðE; vÞ and physical (q,
and equation of state) properties. Though the bulk of the paper assumes a constitutive relationship of linear

elastic, isotropic form, extensions to very high stress regimes are formulated by invoking the equation of

state.

In this work, we seek the stress history in X1, as posed in Fig. 2(b). This problem is identical to the

problem in Fig. 2(c) if the thickness of the flyer plate ðdfÞ and the target plate ðdtÞ, and the lateral

dimensions (radius of the plates) are large enough not to permit wave reflections from the free surfaces to
interfere with the solution. In other words, the strain state remains strictly one dimensional for the solution

time duration.

The governing equations can be written as follows:

Equation of motion
orðx; tÞ
ox

¼ qi
o2uðx; tÞ

ot2
: ð1Þ
Velocity continuity
oeðx; tÞ
ot

� ovðx; tÞ
ox

¼ 0: ð2Þ
Constitutive relation (elastic laminates)
rðx; tÞ ¼ Eieðx; tÞ; ð3Þ
where rðx; tÞ, uðx; tÞ, vðx; tÞ and eðx; tÞ denote the longitudinal stress, displacement, velocity and strain,

respectively. As shown in Fig. 2(b), the constants qi and Ei ði ¼ 1; 2; 3Þ represent the material densities
and the elastic moduli for the uniaxial strain of materials A, B and C, respectively.

Initial boundary condition

Stress, displacement and strain are zero in X1 and X2 at t ¼ 0�
rðx; 0Þ ¼ 0

uðx; 0Þ ¼ 0

eðx; 0Þ ¼ 0

8><
>: for �1 < x < 1: ð4Þ
Initial velocity condition
vðx; 0Þ ¼ v0 for x < 0: ð5Þ
Stress and velocity continuity (at all interfaces)

For wave propagation in a layered medium, the stress and displacement continuity should be maintained

at all interfaces

(a) stress continuity at x ¼ h1 þ Ld
raðh1 þ Ld; tÞ ¼ rbðh1 þ Ld; tÞ; ð6Þ
where L is a positive integer representing the number of unit cells and hi ði ¼ 1; 2Þ, are the thickness of layer
1 and layer 2, and the d is the thickness of the unit cell with d ¼ h1 þ h2;
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(b) stress continuity at x ¼ Ld

raðLd; tÞ ¼ rbðLd; tÞ: ð7Þ
In the same manner, velocity continuity at x ¼ h1 þ Ld and x ¼ Ld
vaðh1 þ Ld; tÞ ¼ vbðh1 þ Ld; tÞ; ð8Þ

vaðLd; tÞ ¼ vbðLd; tÞ: ð9Þ
3.2. Solution method

Before we formulate a solution method to the problem prescribed in Eqs. (1)–(9) it is instructive to

garner the prevailing solutions to closely related problems. The earliest useful work is the Floquet’s theory

(1880) to a system of ordinary differential equations (ODEs) with periodic coefficients. Solutions to those

ODEs can be written as a set of functions with the same period as the problem. Rytov (1956), Sve (1972),

Chen and Clifton (1975) used Floquet’s theory, when stress in the form of a Heaviside function is applied to

X1, as shown in Fig. 2(d). These works are very important for the present development; however, the

boundary condition of unit step loading is quite different from that prescribed in Fig. 2(b) and it sub-

stantially alters the final results. In a recent paper (Chandra et al., 2002), the present authors have for-
mulated the problem as a sequence of scattering events at each of the interfaces A–B–A. . . and developed a

solution to the strength of the propagating waves as a function of time and space.

3.2.1. The late-time solution for unit step loading

We seek velocity or/and stress as a function of time at any given location. Thus the solution is of the

form v ¼ vðx; tÞ and r ¼ rðx; tÞ. The time domain in the governing equations (1)–(9) is now converted to

frequency domain through the Laplace transform. Then by invoking Floquet’s theory and also considering

the stress and velocity continuity at x ¼ h1 and x ¼ d based on Eqs. (6)–(9), we can obtain the dispersion
relation (for details see Appendix A)
cosh kd ¼ cosh
s
c1
h1 cosh

s
c2
h2 þ

1

2

q1c1
q2c2

�
þ q2c2

q1c1

�
sinh

s
c1
h1 sinh

s
c2
h2; ð10Þ
where k is effective wave number for waves in the laminates, s is the frequency of the wave in layer A and

layer B, where h1,h2 and c1; c2 are thicknesses and longitudinal wave velocities of layers A and B, respec-

tively. Eq. (10) describes the effective sound wave number k of laminates in terms of velocities c1 and c2 in
each layer for a given frequency s, and is thus termed as ‘dispersion relation’.

From Eq. (10) we can obtain the phase velocity at zero frequency limit by letting frequency s ! 0 (or

time t ! dÞ. Thus
c0 ¼
d

h1
c1

� �2
þ h2

c2

� �2
þ q1c1

q2c2
þ q2c2

q1c1

� �
h1h2
c1c2

	 
1=2 ; ð11Þ
where c0 is the phase velocity at the zero frequency limit for the laminated system (as shown in Eq. (11)). It

should be noted that above equation is obtained by letting t ! 1, and consequently valid for large

propagation distance. The above solution is independent of the boundary condition, and thus Eq. (11) is

equally valid for both plate impact and unit step loading.
For unit step loading (see Fig. 2(d)), the stress boundary condition for the target plate is
rð0; tÞ ¼ r0HðtÞ; ð12Þ
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where r0 is the applied stress on the boundary of the laminates. The solution of the stress response at x ¼ Ld
can be obtained by evaluating the integral from the inverse of Laplace transform
rðLd; tÞ ¼ 1

2pi

Z cþi1

c�i1
�rðLd; sÞest ds: ð13Þ
Now let a small time-scale d be defined as
d ¼ t � x=c0: ð14Þ

By introducing d, we remove the variable x from the stress function shown in Eq. (13). Substituting Eqs.

(14) into (13) and assuming pðt; dÞ is the stress function with t, d as the variables
pðt; dÞ ¼ r0

2pi

Z cþi1

c�i1

e�dgðsÞethðsÞ ds
s

; ð15Þ
where
gðsÞ ¼ kðsÞc0;

hðsÞ ¼ gðsÞ þ s ¼ kðsÞc0 þ s:
We seek an asymptotic representation of pðt; dÞ for t ! 1. Such representation can be obtained by making

the integration path following a path of steepest descent through the saddle point s0 at which h0ðsÞ ¼ 0. This

happens when s ! 0. Evaluation of the integral in Eq. (15) finally gives an integral of the Airy function, so

the overall stress history at x is given by
rðx; tÞ ¼ r0

1

3

	
þ
Z B

0

Aið � sÞds


; ð16Þ
where
B ¼ t
�

� x
c0

�
2

h000ð0Þt

� �1=3

ð17Þ
and
h000ð0Þ ¼ ðc0Þ2

d2

h1
c1

� �2 h2
c2

� �2

1=4
q1c1
q2c2

�"(
þ q2c2

q1c1

�2

� 1

#)
: ð18Þ
It should be noted that Sve (1972) evaluated an integral analogous to Eq. (15) and obtained the same

solution as above. But the above solution for unit step loading is given by Chen and Clifton’s (1975) work,

and the details are shown in Appendix A.

Eq. (16) provides the solution to the stress profile of a laminated system subjected to a unit step loading.

Though it is tempting to specify the amplitude of this step as the stress at the impact plane at the time of
impact, it will be shown later that this is not correct. Despite this, the stress response of a unit step loading

on bilaminates qualitatively displays all the essential features found in plate impact tests. Consider the case

of bilaminates with material A as PMMA with h1 ¼ 0:26 mm and B as copper with h2 ¼ 0:36 mm. When

subjected to unit step loading given by Eq. (12), the stress history at x ¼ 10 mm can be calculated using Eqs.

(16) and (18). Fig. 3 shows the stress history. It should be noted that the effective speed of c0 is the wave

velocity that corresponds to a stress level of 1
3
r0. It can be seen that the stress rises with a specific slope (as

opposed to a vertical rise for a homogenized material). Then the stress oscillates about an average stress

equivalent to the applied stress r0. In addition, the oscillations are almost harmonic with the amplitude of
oscillations decaying with time.
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Fig. 3. Solution to the unit step loading condition in PMMA-Cu.
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3.2.2. Solution to the plate impact problem

Problem as shown in Fig. 2(c) describes the plate impact problem while late-time solution in the previous

section pertains to problem in Fig. 2(d). For a plate impact test, the body X2 is continuously in contact with

X1 imposing initially a velocity boundary condition at x ¼ 0 and at t ¼ 0, compared to the constant stress
boundary condition in Fig. 2(d). However, for problems in Fig. 2(c) the magnitude of loading on the

boundary of the target plate keeps changing due to wave reflections in the target plate. Let us suppose r0 be

the stress induced at the time of impact between C and A. As shown below, additional stress increments are

induced at the impact plane due to wave reflections from interfaces.

In this section, we formulate the stress increments as a function of impedance mismatch between the

materials A and B, and between materials C and A.

Incident wave. Upon initial impact of X2 on X1, the incident wave with magnitude r0 is generated at the

impact instant, and the magnitude r0 is given by
r0 ¼
q3c3q1c1v0
q3c3 þ q1c1

: ð19Þ
Second wave train. Fig. 4(a) shows the schematics of the wave traveling within the target body X1. The

incident wave first travels in material A. As it reaches the interface A–B, part of it is reflected back and the

rest of it is transmitted (shown in dotted line only for wave train ‘a’). This reflected wave arrives back at the

impact plane after a time tr1 ¼ 2ta ¼ 2h1=c1. Stress at the impact plane is altered by this new wave arrival

given by
Dr1 ¼ rA–Bð1þ rA–CÞr0; ð20Þ
where rA–B ¼ q2c2�q1c1
q1c1þq2c2

and rA–C ¼ q3c3�q1c1
q1c1þq3c3

are the reflection ratios at interface A–B and C–A, respectively.

Here C is the flyer plate. The cumulative stress level up to the second wave train at x ¼ 0 at

tr1 ¼ 2ta ¼ 2h1=c1 is
r1 ¼ r0 þ Dr1 ¼ ½rA–Bð1þ rA–CÞ þ 1�r0: ð21Þ
Third wave train. The propagation path of the third wave train depends on the ratio of the transit time in

layer AðtaÞ and that in layer BðtbÞ.
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(a) If ta ¼ ðh1c1Þ > tb ¼ ðh2c2Þ, then the third wave train comes from the branch that has one reflection in layer B

and reaches the boundary at t ¼ 2ta þ 2tb, which is represented as path b in Fig. 4 (a). The stress vari-

ation due to the wave train that follows this path can be calculated as
Dr2 ¼ ½rA–Bð1� r2A–BÞð1þ rA–CÞ�r0: ð22Þ

So, the overall stress magnitude up to the third wave train (still at the impact plane) is
r2 ¼ r1 þ Dr2: ð23Þ

(b) If ta ¼ h1

c1

� �
< tb ¼ h2

c2

� �
, then the third wave train follows path c, which goes through two reflections in

layer A and reaches the impact plane at time tr2 ¼ 4h1=c1
Dr0
2 ¼ r2A–BrA–Cð1þ rA–CÞr0: ð24Þ
The overall stress is
r2 ¼ r1 þ Dr0
2: ð25Þ
(c) When ta ¼
�
h1
c1

�
¼ tb ¼

�
h2
c2

�
, the propagating path of the wave trains is independent of the materials. So

the third wave train comprises waves that follow path b and waves that follow path c. As a result, the

increment of this wave trains Dr00
2 are the sum of Eq. (22) and Eq. (24), so we have
r2 ¼ r1 þ Dr00
2 ¼ r1 þ Dr2 þ Dr0

2: ð26Þ
Fourth wave train. The propagation path of the fourth wave train that reaches the boundary of the target

plate still depends on the transit times ta and tb. For example, if ta > 2tb, then the fourth wave train follows

path d and arrives at the boundary at time tr3 ¼ 2ta þ 4tb; as shown in Fig. 4, can be obtained by
Dr3 ¼ ½r3A–Bð1� r2A–BÞð1þ rA–CÞ�r0: ð27Þ

And the overall stress up to the third wave train r3 is
r3 ¼ r2 þ Dr3: ð28Þ

Also, if ta ¼ tb, then the fourth wave train contains the waves that follow either path d or path e.

The fifth, sixth and additional wave trains that are generated later lead to stress increments Dr4;Dr5; . . .
Obviously the above analysis shows that the boundary condition to be imposed on the target body X1 is not

a constant but varies with time as a result of reflected waves coming from the interfaces. Thus the stress
boundary condition at x ¼ 0 comprises impact stress r0 (called the head wave), followed by the second wave
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train Dr1 after time tr1 ¼ 2ta, then the third wave train Dr2 at tr2 ¼ 2ta þ 2tb (if ta > tb) or at tr2 ¼ 4ta
(if ta 6 tb), the fourth wave train Dr3 at tr3 and so on. The exact solution should consider all these stress

increments with specific time delays as the loading condition at x ¼ 0. Since the formulation is linear, the

late-time solution to a plate impact problem can be obtained by the method of superposition of unit step
loadings with steps corresponding to incremental stress and specific time delays.
3.2.2.1. Mean stress rmean. In the present problem, the target and the impactor materials are assumed to be

of infinite thickness and hence back surfaces do not exist. Waves continue to travel in the positive x-
direction in the target and negative x-direction in the impactor. Waves that arrive at the plane of the impact

are those that have suffered multiple interactions in the target plate. The energy content of the newly
arriving waves will in general, decrease with time as more energy is being diffused away from the plane of

the impact. Thus the incremental stress contribution by late arriving waves will continue to decrease and

eventually vanish signalling the steady-state conditions. One can always identify a finite number n in a

sequence of arriving waves such that
Fig. 5.

(a) PM
X1
i>n

Dri

�����
����� < �; ð29Þ
where � is an arbitrarily chosen, very small stress level. If this is true, then a steady-state stress value is

reached at the plane of the impact (in reality throughout the domains X1 and X2) and this value will be
designated as rmean in the present study.

In order to confirm the existence of rmean or Eq. (29), we can examine the plate impact tests of two

different material systems comprising PMMA/Cu and PMMA/Al. Fig. 5(a) is the example of PMMA

impacting PMMA/Cu with the thicknesses h1 ¼ 0:26 mm and h2 ¼ 0:36 mm, while Fig. 5(b) shows the

stress history of aluminum impacting PMMA/Al. In both cases, the incremental stress levels in the first few

steps are significantly larger than the subsequent steps and the total stress finally oscillates about a steady-

stress state (marked in dotted line). The analytical results were also compared with numerical results using

an explicit FEM code. FEM results (shown in thick dark lines) indicate very similar trend in the incre-
mental stresses all the way to the steady-state. This validates the existence of rmean and possible hypothesis

given in Eq. (29). Thus it is possible to use the superposition of the first few steps to obtain the value of

steady-state stress rmean.
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Comparison of the stress history at the boundary of the layered systems between analytical solution and the numerical results:

MA impacting PMMA26/Cu36, and (b) Al impacting the PMMA26/Al36.
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It should be noted that r0 is the stress at the instant of impact in a homogenous (as well as heterogenous)

system, and is also the steady-state value for the homogenous system. For a heterogeneous system the

steady-state value is rmean. The ratio rmean

r0
represents the amplification factor induced due to the heteroge-

neity of the body X1. Obviously this ratio is unity if X1 were to be homogeneous. Since the above procedure
of computing rmean is tedious and not elegant, herein we explore other means of obtaining the same result.

The existence of the steady-state suggests rule of mixture as a possible effective medium theory. Thus

invoking mixture theory, the density of the target body can be written as
~q0 ¼ gq1 þ ð1� gÞq2; ð30Þ

where g is the volume fraction of the first component (material A). For low velocity loading, we can assume

that g is constant with the relation
g ¼ h1
d
: ð31Þ
Since c0 represents the effective sound velocity in the laminate, the equivalent impedance of the mixture is
~q0c0. From the stress continuity at the impact surface, we have
rmean ¼ q3c3ðv0 � upÞ ¼ ~q0c0up; ð32Þ
where up is particle velocity. By eliminating up, the mean stress can be written as
rmean ¼
q3c3~q0c0v0
q3c3 þ ~q0c0

: ð33Þ
From Eq. (19) and (33) we can obtain the normalized mean stress as
rmean

r0

¼ q3c3 þ q1c1
q3c3 þ ~q0c0

~q0c0
q1c1

: ð34Þ
The above relation has also been plotted in Fig. 5(a) and (b) and shows that Eq. (34) is capable of
determining rmean without actually computing many incremental stress levels.

3.2.2.2. Multiple-steps loading. The determination of rmean though very useful in computing the steady-state

response of heterogeneous material, still cannot capture the wave structure that precedes the steady-state

value. For this we still need to use multiple steps as outlined below. We can now propose a solution that

comprises n steps in the stress loading function at the plane of impact due to first n wave trains. In order to

make the final steady-state reach rmean, we set
Drn�1 ¼ rmean � rn�2: ð35Þ

For example, for a four-step method (when n ¼ 4), the fourth step is specified by
Dr3 ¼ rmean � r2: ð36Þ

The whole loading history at the impact plane is shown in Fig. 4(b). Now we consider each step as a case of

unit step loading with its amplitude and starting time determined by the scattering process. Through
superposition, the solution can be written as
rðx; tÞ ¼

r0ðx; tÞ; x
c0
6 t < tr1 þ x

c0
;

r0ðx; tÞ þ Dr1ðx; tÞ; tr1 þ x
c0
6 t6 tr2 þ x

c0
;

r0ðx; tÞ þ Dr1ðx; tÞ þ Dr2ðx; tÞ; tr2 þ x
c0
< t < tr3 þ x

c0
;

r0ðx; tÞ þ Dr1ðx; tÞ þ Dr2ðx; tÞ þ Dr3ðx; tÞ; tr3 þ x
c0
< t;

8>>><
>>>:

ð37Þ
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where
r0ðx; tÞ ¼ r0

1

3

	
þ
Z B

0

Aið � sÞds


;

and
Drjðx; tÞ ¼ Drj
1

3

	
þ
Z B

0

Aið � sÞds


; j ¼ 1; 2; 3; 4: ð38Þ
The above equations can be solved similar to Eqs. (16)–(18) (see also Appendix A, (A.24)–(A.26)). The

solution so obtained is usually referred to as the late-time solution. Late-time solution should rather be

called as far-field solution and should be distinguished from steady-state solution as discussed below.

3.2.2.3. Application of the late-time solution based on elastic analysis. As shown in Section 3.2.1, the late-time

solution predicts the stress history at a far-field arising from the contribution of the main disturbance, when

the frequency s ! 0. Theoretically, the late-time solution is only valid when t ! 1 and x ! 1. However,

in order to use the analytical solution in practical problems, one would like to identify a distance x > x� for
which the solution is reasonably valid. If we decompose the incident square wave into Fourier series, the

coefficients of the terms with higher frequencies are increasingly smaller. Also, dispersion relation given by

Eq. (10) indicates that the higher the frequency, the lower the phase velocities (Bedford and Drumheller,
1994). Thus the effect of low frequency predominates at a large x distance over the high frequency content,

and hence the latter can be neglected in preference to the former. Thus for sufficiently large x, the head of

the pulse can be approximated by Eq. (16). Based on the high frequency concept discussed above, we can

identify the location x� where the head wave dies out. Here, we refer to head wave as the first wave

travelling in the heterogeneous medium with successive transmissions. Thus for location xP x� late-time

solutions presented in this paper can be used. For x < x�, we need to consider the effect of all the interacting

waves as discussed in our earlier paper (Chandra et al., 2002). Additionally, from the hypothesis of x�, it is
clear that x� in a system with high impedance mismatch (equivalent to high rA–B), is much smaller than that
in another system with small rA–B, if their geometric parameters are the same.

Having determined the region where late-time solution is valid ðxP x�Þ, it then becomes important to

find out how many steps n are required for obtaining the stress response with a specified level of accuracy.

At a fixed location, our numerical study shows that the accuracy depends on j
P1

i>n Drij, which in turn is

affected by material heterogeneity. One measure of heterogeneity factor is impedance mismatch. It is found

that systems with very high impedance mismatch between materials A and B within the target (high rA–B)

yield small j
P1

i>n Drij. For systems with high rA–B, one step ðn ¼ 1Þ solution seems to produce acceptable

result. In the case the equivalent loading condition is given by
rð0; tÞ ¼ rmeanHðtÞ: ð39Þ

In the above equation it is implied that rmean is applied at t ¼ 0 rather than the impact stress, r0. In truth
rmean is reached at time t > 0, and this effect of time is ignored by Eq. (39). For cases with high rA–B, this

assumption implies that the time to reach rmean is small which is understandable. Thus for cases with high

rA–B we can substitute r0 by rmean in Eq. (16) to obtain the solution for plate impact as
rðx; tÞ ¼ rmean

1

3

Z B

0

Aið
	

� sÞds


: ð40Þ
In order to validate the above ideas, we select PMMA/Al system with a high impedance ratio of rA–B ¼ 0:71
and examine the effect of number of loading steps n on the accuracy of the solution. Fig. 6 shows the stress
response at x ¼ 10 mm (impact conditions identical to that in Fig. 5(b)), using 1, 3 and 5 steps. Numerical

results using an explicit finite element code is also presented for comparison purposes. Fig. 6 clearly shows



0

100

200

300

400

500

600

700

2 3 4 5 6

Numerical Solution
n=5
n=3
n=1

Time (

S
tr

es
s

(G
P

a)

 sec)µ

Fig. 6. Comparison of solution for Al impacting PMMA26/Al36 at x ¼ 10 mm. Comparison between FEM result and analytical

solution using n ¼ 1; 3; 5, respectively.

X. Chen et al. / International Journal of Solids and Structures 41 (2004) 4635–4659 4649
that one step solution gives sufficiently accurate results for this case. Though the results are not shown here,

when impedance ratio rA–B is small (for example, below 0.4), the use of one-step method may not be

sufficient and higher number of steps are needed.

All the analyses presented so far, assume that the impact process generates a single elastic wave that
travels away from the impact plane. When velocity of impact increases, the wave enters an elastic–plastic

regime and with further increase the wave becomes a shock wave. For both these cases, the approaches

presented above need to be modified. For the case of shock wave, we present the necessary modifications in

the next section.

3.2.3. Approximate solution for shock loading

The solution given in Section 3.2.2 assumes that the constituent layers are linear elastic and isotropic.

When the loading strength is much higher than the Hugoniot Elastic Limit (HEL), shock waves are
generated. Shock response of materials is a highly nonlinear process and is extremely difficult if not

impossible to obtain purely analytical solutions. However, an approximate explicit solution based on the

previously developed elastic solution can be obtained for shock loading cases by invoking hydrodynamic

treatment ignoring shear stresses. It is important to note that we are dealing with shock response and not

the elastic–plastic response which is of two-wave structure. In shock loading cases, stress non-linearity

depends on the strain. And the slope of the conventional pressure-particle velocity plot represents shock

impedance. We extend the elastic analysis to shock response by incorporating the non-linear effects through

computing shock velocities of the wave trains and superimposing them. Even though the material response
of the constituents is different in shock regime, the structural response of the laminate remains similar to the

elastic regime. For example, both elastic and shock waves are of one-wave structures. Also, the wave

scattering processes at interfaces are similar following the rules of reflection and transmission. Most

importantly, it can be seen from previous experiments (Section 2) that an approximate steady-state can also

be reached in a given layered system. This can be partly explained by the fact that the cumulative amplitude

of the waves remains unchanged during multiple wave interactions or during reflections at interfaces.

For laminated systems under shock loading, velocities of the shock waves depend on the pressure.

Therefore, it is necessary to relate shock velocity, density and volume to the particle velocity by means of
equation of state (EOS) (Meyers, 1994). A general EOS takes the form
Us ¼ C0 þ S1up þ S2u2p þ S3u3p þ � � � ; ð41Þ
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where S1, S2 and S3 are empirical parameters. C0 is the sound velocity in a given material under zero

pressure. For most metals (without porosity and phase transformation), linear relationship between Us and

up is sufficiently accurate and EOS assumes the form
Us ¼ C0 þ S1up: ð42Þ
For materials other than metals, such as polymers, higher order terms need to be included in the EOS. The

density under high pressure ðq0
iÞ can no longer be approximated as the original density. It is directly related

to the loading strength represented by particle velocity upi with
q0
i ¼

1

1� upi
Usi

qi; i ¼ 1; 2; 3: ð43Þ
In the same way, the volume under high pressure ðV 0
i Þ is related to upi by
V 0
i ¼ 1

�
� upi
Usi

�
Vi ; i ¼ 1; 2; 3: ð44Þ
Therefore, in plate impact problem, according to the above equation, the thickness under shock loading

condition ðh0iÞ will be
h0i ¼ 1

�
� upi
Usi

�
hi; i ¼ 1; 2: ð45Þ
New impedance ratio is approximately (assuming that material 2 is harder than material 1)
R0 ¼ q0
2Us2

q0
1Us1

: ð46Þ
It can be seen from Eqs. (41), (42), (43) and (45) that wave velocity, thickness and density for the laminates

subjected to shock loading, all depend on the particle velocity, while they remain constant for elastic re-

sponse. Though velocity is not continuous across a strong shock front, it can be assumed to be continuous
for shocks with moderate amplitude which is the case considered here. Therefore, by substituting the Usi, q0

i

and h0i ði ¼ 1; 2Þ into Eq. (11), we obtain the late-time velocity for shock loading condition ð ~UsÞ as
~Us ¼
h01 þ h02

h0
1

Us2

� �2
þ h0

2

Us2

� �2
þ R0 þ 1

R0

� � h0
1
h0
2

Us1Us2

	 
1=2 : ð47Þ
Similarly, we obtain the mean stress level for a layered system ðr0
meanÞ by assuming that this layered system

is equivalent to a mixture with impedance ~q0
~Us. Similar to Eqs. (32) and (33), we have
r0
mean ¼ ~q0

~Us~u0p ¼
~q0

~Usq3Us3

q3U3 þ ~q0
~Us

v0: ð48Þ
Thus we have obtained r0
mean (Eq. (48)), the steady-state stress value for shock loading conditions analogous

to rmean for elastic loading. However, we need to be very cautious in selecting the number of steps (or wave

trains) since in shock loading conditions different wave trains travel with different velocities. It is possible

that a wave train can travel faster than its predecessor and may even overtake it. This phenomenon in shock

loading conditions may dictate the use of more steps for capturing this effect.
For an observer at a given location, the head wave propagates with longitudinal velocity into uncom-

pressed media. So for a given location xðx ¼ LdÞ, the arrival time of the head wave is



X. Chen et al. / International Journal of Solids and Structures 41 (2004) 4635–4659 4651
tr0o ¼
XL
j¼1

gd
ðUs1Þj

þ ð1� gÞd
ðUs2Þj

; ð49Þ
where ðUs1Þj, ðUs2Þj, are the sound velocities of waves in previously uncompressed materials A and B within
jth unit cell, and g is given by Eq. (31). Immediately behind the head wave, the high pressure r0

0 is achieved
r0
0 ¼

q3Us3q1Us1v0
q3Us3 þ q1Us1

: ð50Þ
Thus the second wave train can travel faster than the head wave since the material is highly compressed

given by Eq. (50). As shown in Fig. 4(a), the second wave train is generated by one reflection inside first

layer (in Material A), and reaches the impact surface after Dt0 from initial impact:
Dt0 ¼ h1
Us1

þ h01
U11

; ð51Þ
where U11 is the wave velocity in material A in compressed media after the wave reflection in the first A–B
interface. For a soft to hard arrangement in the target plate ðq1c1 < q2c2Þ, the pressure in the first layer

increases after the reflection, so we have U11 > Us1. Similarly, the second wave train will travel faster than

the head wave in other layers. As shown in Eq. (51), the time interval between the second wave train and the

head wave is determined by the thickness and wave velocity of the first layer before and after the arrival of

the head wave. The time tr0
1
when the second wave train arrives at location x is given by !
tr0
1
¼ Dt0 þ

XL
j¼1

gd
ðUs1Þj;r0o

þ ð1� gÞd
ððUs2Þj;r0oÞ

; ð52Þ
where ðUs1Þj;r0o and ðUs2Þj;r0o represent the shock velocities in materials A and B in jth unit after initial

compression, respectively. The propagation distance x where the second wave catches up with the head

wave depends on head wave velocity, time of origin of second wave and the compressive stress in the media

as given by Eqs. (52) and (49). As a matter of fact, it can be shown that this ‘overtaking’ effect is critical for
capturing the peak stress in shock wave regime.

Thus the steps in the analytical procedure for determining the stress response under shock loading

conditions are as follows:

1. The shock velocities Usi, and the thickness h0i should be calculated by considering EOS, as shown in Eqs.

(41)–(45).

2. The mean stress r0
mean should be computed using Eqs. (47) and (48).

3. Incident stress in the shock regime r0
0 is given by Eq. (50). Incremental stress values at the impact plane

Dr0
0;Dr0

1; . . . should be calculated using r0
0 in Eqs. (21) and (23), unless modification of reflection ratio is

needed based on velocity variation with pressure.

4. The number of steps, n should be carefully chosen depending on the location x for which the stress is

computed, n should be at least equal to the number of steps needed to reach the first peak from r0
0 at

the impact plane.

5. The effect of ‘overtaking’ of a successor wave over a predecessor wave should be evaluated by comparing

Eqs. (49) and (51). When overtaking takes place, the time interval between these two waves are set to

zero in Eq. (37).

3.3. Modeling plate impact experiments

We first demonstrate the need to use rmean for solving plate impact problems rather than r0, the stress at
the impact plane at the time of the impact. It is also shown that the ratio rmean

r0
can be quite high and depends



4652 X. Chen et al. / International Journal of Solids and Structures 41 (2004) 4635–4659
on a number of heterogeneity factors including the volume fraction of each constituent, the material of the

impactor, and the velocity of impact. In the next section, we examine the shock velocities of each of the

material in the layered system and how they affect the effective shock wave velocity. It is then shown that

the effective material heterogeneity depends on the combination of the materials that comprise the layered
system. Here, we apply the developed method to simulate plate impact tests corresponding to the test

configuration used by Zhuang (2002). In the first experiment, a flyer made of polycarbonate (PC) impacts

on a target made of alternating PC and glass (GS) with velocity of 1079 m/s, as shown in Table 2. The

thickness of the PC and GS layers are 0.37 and 0.20 mm, respectively. In the second test, also shown in

Table 2, a metallic impactor (aluminum) impacts the same composite system with an impact velocity of

1160 m/s. The comparisons of the experimental data and the analytical solutions are given in Fig. 7. It is

clearly seen that very good agreement has been obtained between these two results by matching the detailed

structure.
3.3.1. Mean stress rmean

When a heterogeneous target material (see Sections 3.2) is subjected to plate impact test, rmean is the

steady-state stress. In some sense rmean

r0
represents the heterogeneity of the target system. The heterogeneity

effect given by Eq. (34) is plotted in Fig. 8, which shows the magnitude of rmean

r0
for PMMA (matrix) based

composites systems. Various polymer and metallic materials are used to reinforce the composites. The

figure shows the variation of rmean

r0
with varying volume fraction of PMMA in the composites. Two sets of

data are shown in the figure: the data in the solid line are for cases when the flyer plate is PMMA, while the

data in the dashed lines are for the cases when the flyer plate is aluminum. It can be seen from the figure that
rmean

r0
can vary from 0.9 to 4.8. It should be noted that the maximum values of rmean

r0
shown in this plot assumes
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Fig. 7. Comparisons of the experimental data and the analytical solutions in layered PC/GS: (a) Experiment 1 and (b) Experiment 2

(Zhuang, 2002).

Table 2

Configurations of Experiments 1 and 2 (Zhuang, 2002)

Experiments A B C Impact velocity (m/s) h1 (mm) h2 (mm) Gauge location x

1 PC Glass PC 1079 0.37 0.20 6.44

2 PC Glass Al 1160 0.37 0.20 3.55
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the volume fraction of PMMA cannot be zero. rmean

r0
ratio represents the amplification in the stress levels

reached within the material compared to that at the time of impact, and the figure shows that the ratio can

be very high. Since this ratio can be very high, it clearly demonstrates that only rmean should be used to

model the steady-state response of a plate impact problem. It should be noted that while r0 is dictated by

the heterogeneity at the impact surface (materials A and C) and of course the impact velocity, the mag-
nitude of rmean depends additionally on the impedance mismatch of the components of the target materials

(A and B) and their volume fraction.

Since the magnitude of rmean uniquely determines the steady-state stress in the materials subjected to

plate impact loading, it is interesting to explore whether other theories can lead to the same result. For this

purpose we examine Dremin’s mixture theory. As shown in Appendix B, the same effective sound speed for

the equivalent mixture can be obtained based on this theory. So by obtaining the same effective density and

sound velocity in the mixture, the same expression of mean stress can be obtained by applying Eqs. (32) and

(33). However, as mentioned in Section 2, except for the value of mean stress, mixture theory cannot predict
the complete structure.
3.3.2. The effect of equation of state

When velocity of impact is high enough to generate shock waves, then we need to use equation of state

(EOS). When the target plate is made up of multiple materials with their individual EOS, the application of

EOS of the system is not straightforward. EOS can be expressed as a variation of shock velocity with

particle velocity. Fig. 9(a) shows shock velocity, Us as a function of particle velocity, up for a few materials

of interest. The slope of the curve oUs

oup
is different for different materials; typically the slope varies linearly for

metals and nonlinearly for polymers. Thus the parameter S1 in Eq. (42) determines the slope for metals.

While S1 plays a major role, S2 and S3 or even higher orders cannot be neglected for polymers. It is clear

from this figure that the slope oUs

oup
increases the fastest for polycarbonate (PC) while there is negligible slope

for glass. The slopes of Cu, Al and PMMA show only moderate values.

It should be noted that the impedance mismatch for a pair of given materials not only depends on the

relative magnitudes of shock velocities but on the densities at a given state. For materials under shock

loading conditions, apart from the velocities there is a concurrent increase in densities with particle velocity.

Since impedance is the product of density and shock velocity, and since both increase with particle velocity,

absolute value of the impedance of a given material increases. However, since oUs

oup
and the rate of density

change is different for different materials, impedance mismatch of a given pair materials may increase or

decrease. Fig. 9(b) shows the impedance mismatch of combinations of materials (described in Fig. 9(a)) with
particle velocities. It can be clearly seen from the figure that the impedance mismatch is not a constant for a
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given material combination but is a function of particle velocity and hence the velocity of impact. For

example, the impedance of PC-GS reduces significantly with the increase in particle velocity. However, for

other systems considered here the variation is less significant.
It can be seen from Fig. 7 that the mean stress obtained from analytical solution agrees well with the

experimental results for both cases. It should be noted that by incorporating EOS, the shock velocity and

the density generally increase depending on the loading strength. As a result, the mean stress level obtained

based on Section 3.2.3 can be significantly higher than the mean stress obtained using just elastic analysis

(showed in dotted line). The elastic solution does not even come close to the experimental results clearly

emphasizing the need to use EOS. There is yet another critical difference between elastic and shock loading

conditions in terms of the peak stress. In the elastically loaded condition, the first peak has a magnitude of

1.274 rmean when the steady-state stress is rmean, while this is not true for shock loading. It is important to
note that peak stress may be more critical than mean stress in determining the fracture or damage of

materials. Fig. 7(a) and (b) shows that the first peak stress in both the cases are much higher than 1.274

rmean. This anomaly can be explained by the fact that wave trains in compressed media travel faster and the

second wave may be able to overtake the first wave depending on the distance of propagation, as discussed

earlier. Thus using a single step method may not be adequate for shock loaded cases while it may be

acceptable for elastic loadings. The matching of experimental and analytical results is quite good, in terms

of arrival time, peak stress, frequency of the oscillations, and mean stress.
4. Summary

In this paper, an analytical solution to the problem of plate impact in layered heterogeneous material

systems has been developed. The plate impact problem (Fig. 2(c)) has been clearly shown to be quite

different from the problem of unit step loading. The stress boundary condition in a plate impact test of a

heterogeneous layered target at the plane of the impact continuously varies due to multiple wave inter-

actions inside the target plate. The work can be briefly summarized as follows.

• A steady-state stress value, rmean, has been identified for the case of heterogeneous target system. This

rmean is different from the value at the time of impact r0, and the difference depends on the degree of

material heterogeneity.



X. Chen et al. / International Journal of Solids and Structures 41 (2004) 4635–4659 4655
• The ratio rmean

r0
can be quite high and depends on the volume fraction of constituents, material of the flyer

plate and the velocity of impact among others.

• The magnitude of rmean has been determined using wave dispersion relation. It was further shown that

the same relationship can also be alternatively obtained using Dremin’s mixture theory.
• A late-time solution to the problem of plate impact on a heterogeneous layered material system has been

developed. The spatial range for which the late-time solution is valid ðx > x�Þ has been identified.

• The solution procedure for elastic loading has been formulated using multiple steps. The conditions for

using a single step method have also been identified.

• The solution method for shock loaded cases has also been outlined.

• The developed method has been validated by comparing the analytical results with numerical and experi-

mental data. The comparison is very good.

Appendix A. The late-time solution for unit step loading

Take Laplace transform of Eqs. (1)–(3)
o�rðx; sÞ
ox

¼ qis�vðx; sÞ; ðA:1Þ

o�vðx; sÞ
ox

¼ �s�eðx; sÞ ¼ 0; ðA:2Þ

�rðx; sÞ ¼ Ee
i�eðx; sÞ: ðA:3Þ
The solution of equations of Eqs. (A.1)–(A.3) are in the form
�vðx; sÞ ¼ aiekix þ bie�kix; ðA:4Þ

�rðx; sÞ ¼ ai
sqi

ki

� �
ekix þ bi

�
� sqi

ki

�
e�kix; ðA:5Þ
where
ki ¼ kiðsÞ ¼
s
ci

ðA:6Þ
and ci is phase velocity given by
ci ¼
Ee
i

qi

	 
1=2
:

For ordinary differential equations with periodic coefficients, Floquet theory can be applied
�rðx; sÞ ¼ ekðsÞd�rðx� d; sÞ; ðA:7Þ

�vðx; sÞ ¼ ekðsÞd�vðx� d; sÞ: ðA:8Þ

By considering the stress and velocity continuity across x ¼ h1, let L ¼ 0 in Eqs. (6) and (8), then
a1ek1h1 þ b1e�k1h1 ¼ a2ek2h1 þ b2e�k2h1 ; ðA:9Þ

a1
q1

k1

� �
ek1h1 � b1

q1

k1

� �
e�k1h1 ¼ a2

q2

k2

� �
ek2h1 � b2

q2

k2

� �
e�k2h1 : ðA:10Þ
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Stress and velocity continuity across x ¼ d
ekdða1 þ b1Þ ¼ a2ek2d þ b2e�k2d ; ðA:11Þ

ekd a1
q1

k1

�
� b1

q1

k1

�
¼ a2

q2

k2
ek2d � b2

q2

k2
e�k2d : ðA:12Þ
Eqs. (A.9)–(A.12) have non-trivial solutions only when the determinant of the coefficients is equal to zero.

This condition yields the transcendental dispersion relation
cosh kd ¼ cosh k1h1 cosh k2h2 þ
1

2

q1c1
q2c2

�
þ q2c2

q1c1

�
sinh k1h1 sinh k2h2: ðA:13Þ
where k is wave number for the laminates, k1 and k2 are frequencies for layer A and layer B, where h1, h2 and
c1, c2 are the thickness and the longitudinal wave velocities of the layers respectively. And d is the thickness

of the unit cell, with d ¼ h1 þ h2, as shown in Fig. 2(c).

For steady wave with frequency s, the dispersion relation can be written as
cosh kd ¼ cosh
s
c1
h1 cosh

s
c2
h2 þ

1

2

q1c1
q2c2

�
þ q2c2

q1c1

�
sinh

s
c1
h1 sinh

s
c2
h2: ðA:14Þ
Therefore, the phase velocity for zero-frequency limit c0 is obtained
c0 ¼
d

h1
c1

� �2
þ h2

c2

� �2
þ q1c1

q2c2
þ q2c2

q1c1

� �
h1h2
c1c2

� �1=2
: ðA:15Þ
In order to get the solution for plate impact loading, it is convenient and necessary to show the solution for

the problem of unit step loading. For unit step loading, the boundary condition for the target plate can be

written as
rð0; tÞ ¼ r0HðtÞ: ðA:16Þ

Its corresponding Laplace transform is
rð0; sÞ ¼ r0

s
: ðA:17Þ
The transformed stress at distance x ¼ Ld can be obtained by Floquet theory
rðLd; sÞ ¼ ekðsÞLd=2
r0

s
ðA:18Þ
The late-time solution can be obtained by the asymptotic evaluation of the integral
rðLd; tÞ ¼ 1

2pi

Z cþi1

c�i1
�rð2Ld; sÞest ds: ðA:19Þ
Now introduce a small time scale
d ¼ t � x=c0: ðA:20Þ
By introducing d, we remove the variable x in the stress function in Eq. (A.19). Substitute Eqs. (A.20) and

(A.18) to Eq. (A.19) and assume pðt; dÞ is the stress function with t and d being the variables,
pðt; dÞ ¼ r0

2pi

Z cþi1

c�i1

e�dgðsÞethðsÞ ds
s

; ðA:21Þ
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where
gðsÞ ¼ kðsÞc0;

hðsÞ ¼ gðsÞ þ s ¼ kðsÞc0 þ s:
For late-time solution, we seek an asymptotic representation of pðt; dÞ for t ! 1 with fixed d. Such rep-

resentation can be obtained by making the integration path follows a path of steepest descent though the

saddle point s0 at which h0ðsÞ ¼ 0. This happens when s ! 0. The expansion of about the saddle point yields

(for elastic cases)
hðsÞ ¼ h000ð0Þ
3!

s3; ðA:22Þ
where
h000ð0Þ ¼ ðc0Þ2

d2

h1
c1

� �2 h2
c2

� �2
1

4

q1c1
q2c2

�"(
þ q2c2

q1c1

�2

� 1

#)
: ðA:23Þ
So the integral of Eq. (A.21) becomes
pðt; dÞ ¼ 1

3
r0 þ

r0

2pi

Z
C

eds h000ð0Þ
3!

s3

s
ds: ðA:24Þ
Evaluation of the integral in Eq. (A.24) will finally give an integral of the Airy function.
rðxLd ; tÞ ¼ r0

1

3

	
þ
Z B

0

Aið � sÞds


; ðA:25Þ
where
B ¼ t
�

� x
c0

�
2

h000ð0Þt

� �1=3

: ðA:26Þ
The above solution for unit step loading follows Chen and Clifton’s (1975) work. Also, it should be noted

that Sve (1972) evaluated an integral analogous to Eq. (A.21) and obtained the same final result.
Appendix B. Dremin’s theory in finding effective wave speed

In this theory, it is assumed that the specific volume of the shock-compressed mixture is equal to the sum

of the specific volume of its components, obtained at the same pressure by separate shock compression
~V ¼ aV1ðP Þ þ ð1� aÞV2ðP Þ; ðB:1Þ

where P is the pressure or stress, ~V ,V1 and V2 are the specific volumes of the mixture, materials 1 and 2,

respectively. a is the mass fraction of component 1. Differentiating the above equation with respect to

pressure P , we obtain
d~V
dP

¼ a
dV1
dP

þ ð1� aÞ dV2
dP

: ðB:2Þ
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In the above equation d~V
dP represents the slope of Hugoniot curve of the mixture which can then be equated

as follows:
d~V
dP

¼ �
~V 2

~U 2
s

: ðB:3Þ
The above Eq. (B.3) can be written for each of the constituent materials 1 and 2, and that of the mixture.

Now using those definitions in Eq. (B.2) we obtain the shock velocity ~Us of the mixture
~Us ¼
~V

a
ðqsUs1Þ2

þ ð1�aÞ
ðq2Us2Þ2

h i1=2 : ðB:4Þ
In elastic region, the effective volume in the above equation is given by
~V ¼ 1

~q0

¼ h1 þ h2
q1h1 þ q2h2

: ðB:5Þ
Also, conservation of mass holds for each constituent as well as for the mixture, so the mass fraction of the
material 1 is given by a ¼ q1h1

q1h1þq2h2
. By substituting a and the specific volume ~V in Eq. (B.5) into Eq. (B.4), we

have
~Us ¼
h1 þ h2

ðq1h1 þ q2h2Þ q1h1
q2
1
c2
1

þ q2h2
q2
2
c2
2

� �h i1=2 : ðB:6Þ
By expansion of the terms in the denominator and rearrangement of these terms, it is found that
~Us ¼
h1 þ h2

h1
c1

� �2
þ h2

c2

� �2
þ q1c1

q2c2
þ q2c2

q1c1

� �
h1h2
c1c2

	 
1=2 ¼ c0: ðB:7Þ
In the same manner, it can be shown that under shock loading condition the same velocity is also obtained

through these two different theories.
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